9 research outputs found

    Adaptive energy management for hybrid power system considering fuel economy and battery longevity

    Get PDF
    The adoption of hybrid powertrain technology brings a bright prospective to improve the economy and environmental friendliness of traditional oil-fueled automotive and solve the range anxiety problem of battery electric vehicle. However, the concern of the battery aging cost is the main reason that keeps plug-in hybrid electric vehicles (PHEV) from being popular. To improve the total economy of PHEV, this paper proposes a win-win energy management strategy (EMS) for Engine-Battery-Supercapacitor hybrid powertrains to reduce energy consumption and battery degradation cost at the same time. First of all, a novel hierarchical optimization energy management framework is developed, where the power of internal combustion engine (ICE), battery and super capacitor (SC) can be gradationally scheduled. Then, an adaptive constraint updating rule is developed to improve vehicle efficiency and mitigate battery aging costs. Additionally, a control-oriented cost analyzing model is established to evaluate the total economy of PHEV. The quantified operation cost is further designed as a feedback signal to improve the performance of the power distribution algorithm. The performance of the proposed method is verified by Hardware-in-the-loop experiment. The results indicate that the developed EMS method coordinates the operation of ICE, driving motor (DM) and energy storage system effectively with the fuel cost and battery aging cost reduced by 6.1% and 28.6% respectively compared to traditional PHEV. Overall, the introduction of SC and the hierarchical energy management strategy improve the total economy of PHEV effectively. The results from this paper justify the effectiveness and economic performance of the proposed method as compared to conventional ones, which will further encourage the promotion of PHEVs.</p

    Pedestrian-Aware Supervisory Control System Interactive Optimization of Connected Hybrid Electric Vehicles via Fuzzy Adaptive Cost Map and Bees Algorithm

    Get PDF
    Electrified vehicles are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. Due to the nature of engine-assisted vehicle exhaust systems, pedestrians in close proximity to these vehicles may experience events where specific emission concentrations are high enough to cause health effects. To minimize pedestrians’ exposure to vehicle emissions and pollutants nearby, we present a pedestrian-aware supervisory control system for connected hybrid electric vehicles by proposing an interactive optimization methodology. This optimization methodology combines a novel fuzzy adaptive cost map and the Bees Algorithm to optimize power-split control parameters. It enables the self-regulation of inter-objective weights of fuel and exhaust emissions based on the real-time pedestrian density information during the optimization process. The evaluation of the vehicle performance by using the proposed methodology is conducted on the realistic trip map involving pedestrian density information collected from the University College Dublin campus. Moreover, two bootstrap sampling techniques and effect of communication quality are both investigated in order to examine the robustness of the improved vehicle system. The results demonstrate that 14.42% mass of exhaust emissions can be reduced for the involved pedestrians, by using the developed fuzzy adaptive cost map

    Pedestrian-aware supervisory control system interactive optimization of connected hybrid electric vehicles via fuzzy adaptive cost map and bees algorithm

    Get PDF
    Electrified vehicles are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. Due to the nature of engine-assisted vehicle exhaust systems, pedestrians in close proximity to these vehicles may experience events where specific emission concentrations are high enough to cause health effects. To minimize pedestrians’ exposure to vehicle emissions and pollutants nearby, we present a pedestrian-aware supervisory control system for connected hybrid electric vehicles by proposing an interactive optimization methodology. This optimization methodology combines a novel fuzzy adaptive cost map and the Bees Algorithm to optimize power-split control parameters. It enables the self-regulation of inter-objective weights of fuel and exhaust emissions based on the real-time pedestrian density information during the optimization process. The evaluation of the vehicle performance by using the proposed methodology is conducted on the realistic trip map involving pedestrian density information collected from the University College Dublin campus. Moreover, two bootstrap sampling techniques and effect of communication quality are both investigated in order to examine the robustness of the improved vehicle system. The results demonstrate that 14.42% mass of exhaust emissions can be reduced for the involved pedestrians, by using the developed fuzzy adaptive cost map

    Energy management strategies for fuel cell vehicles: A comprehensive review of the latest progress in modeling, strategies, and future prospects

    Get PDF
    Fuel cell vehicles (FCVs) are considered a promising solution for reducing emissions caused by the transportation sector. An energy management strategy (EMS) is undeniably essential in increasing hydrogen economy, component lifetime, and driving range. While the existing EMSs provide a range of performance levels, they suffer from significant shortcomings in robustness, durability, and adaptability, which prohibit the FCV from reaching its full potential in the vehicle industry. After introducing the fundamental EMS problem, this review article provides a detailed description of the FCV powertrain system modeling, including typical modeling, degradation modeling, and thermal modeling, for designing an EMS. Subsequently, an in-depth analysis of various EMS evolutions, including rule-based and optimization-based, is carried out, along with a thorough review of the recent advances. Unlike similar studies, this paper mainly highlights the significance of the latest contributions, such as advanced control theories, optimization algorithms, artificial intelligence (AI), and multi-stack fuel cell systems (MFCSs). Afterward, the verification methods of EMSs are classified and summarized. Ultimately, this work illuminates future research directions and prospects from multi-disciplinary standpoints for the first time. The overarching goal of this work is to stimulate more innovative thoughts and solutions for improving the operational performance, efficiency, and safety of FCV powertrains

    Pedestrian-Aware Engine Management Strategies for Plug-In Hybrid Electric Vehicles

    No full text
    Electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) are increasingly being seen as a means of mitigating the pressing concerns of traffic-related pollution. While hybrid vehicles are usually designed with the objective of minimizing fuel consumption, in this paper we propose a engine management strategies that also consider environmental effects of the vehicles to pedestrians outside of the vehicles. Specifically, we present the optimisation-based engine energy management strategies for PHEVs that attempt to minimize the environmental impact of pedestrians along the route of the vehicle, while taking account of route-dependent uncertainties. We implement the proposed approach in a real PHEV and evaluate the performance in a hardware-in-the-loop platform. A variety of simulation results are given to illustrate the efficacy of our proposed approach
    corecore