44 research outputs found

    MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images

    Get PDF
    This paper is aimed at creating extremely small and fast convolutional neural networks (CNN) for the problem of facial expression recognition (FER) from frontal face images. To this end, we employed the popular knowledge distillation (KD) method and identified two major shortcomings with its use: 1) a fine-grained grid search is needed for tuning the temperature hyperparameter and 2) to find the optimal size-accuracy balance, one needs to search for the final network size (or the compression rate). On the other hand, KD is proved to be useful for model compression for the FER problem, and we discovered that its effects gets more and more significant with the decreasing model size. In addition, we hypothesized that translation invariance achieved using max-pooling layers would not be useful for the FER problem as the expressions are sensitive to small, pixel-wise changes around the eye and the mouth. However, we have found an intriguing improvement on generalization when max-pooling is used. We conducted experiments on two widely-used FER datasets, CK+ and Oulu-CASIA. Our smallest model (MicroExpNet), obtained using knowledge distillation, is less than 1MB in size and works at 1851 frames per second on an Intel i7 CPU. Despite being less accurate than the state-of-the-art, MicroExpNet still provides significant insights for designing a microarchitecture for the FER problem.Comment: International Conference on Image Processing Theory, Tools and Applications (IPTA) 2019 camera ready version. Codes are available at: https://github.com/cuguilke/microexpne

    Island Loss for Learning Discriminative Features in Facial Expression Recognition

    Full text link
    Over the past few years, Convolutional Neural Networks (CNNs) have shown promise on facial expression recognition. However, the performance degrades dramatically under real-world settings due to variations introduced by subtle facial appearance changes, head pose variations, illumination changes, and occlusions. In this paper, a novel island loss is proposed to enhance the discriminative power of the deeply learned features. Specifically, the IL is designed to reduce the intra-class variations while enlarging the inter-class differences simultaneously. Experimental results on four benchmark expression databases have demonstrated that the CNN with the proposed island loss (IL-CNN) outperforms the baseline CNN models with either traditional softmax loss or the center loss and achieves comparable or better performance compared with the state-of-the-art methods for facial expression recognition.Comment: 8 pages, 3 figure
    corecore