529 research outputs found

    A Review of Active Management for Distribution Networks: Current Status and Future Development Trends

    Get PDF
    Driven by smart distribution technologies, by the widespread use of distributed generation sources, and by the injection of new loads, such as electric vehicles, distribution networks are evolving from passive to active. The integration of distributed generation, including renewable distributed generation changes the power flow of a distribution network from unidirectional to bi-directional. The adoption of electric vehicles makes the management of distribution networks even more challenging. As such, an active network management has to be fulfilled by taking advantage of the emerging techniques of control, monitoring, protection, and communication to assist distribution network operators in an optimal manner. This article presents a short review of recent advancements and identifies emerging technologies and future development trends to support active management of distribution networks

    Competitive Prediction-Aware Online Algorithms for Energy Generation Scheduling in Microgrids

    Full text link
    Online decision-making in the presence of uncertain future information is abundant in many problem domains. In the critical problem of energy generation scheduling for microgrids, one needs to decide when to switch energy supply between a cheaper local generator with startup cost and the costlier on-demand external grid, considering intermittent renewable generation and fluctuating demands. Without knowledge of future input, competitive online algorithms are appealing as they provide optimality guarantees against the optimal offline solution. In practice, however, future input, e.g., wind generation, is often predictable within a limited time window, and can be exploited to further improve the competitiveness of online algorithms. In this paper, we exploit the structure of information in the prediction window to design a novel prediction-aware online algorithm for energy generation scheduling in microgrids. Our algorithm achieves the best competitive ratio to date for this important problem, which is at most 3−2/(1+O(1w)),3-2/(1+\mathcal{O}(\frac{1}{w})), where ww is the prediction window size. We also characterize a non-trivial lower bound of the competitive ratio and show that the competitive ratio of our algorithm is only 9%9\% away from the lower bound, when a few hours of prediction is available. Simulation results based on real-world traces corroborate our theoretical analysis and highlight the advantage of our new prediction-aware design.Comment: This paper has been accepted into ACM e-Energy 2022 and will appear in the conference proceeding

    Online Energy Generation Scheduling for Microgrids with Intermittent Energy Sources and Co-Generation

    Full text link
    Microgrids represent an emerging paradigm of future electric power systems that can utilize both distributed and centralized generations. Two recent trends in microgrids are the integration of local renewable energy sources (such as wind farms) and the use of co-generation (i.e., to supply both electricity and heat). However, these trends also bring unprecedented challenges to the design of intelligent control strategies for microgrids. Traditional generation scheduling paradigms rely on perfect prediction of future electricity supply and demand. They are no longer applicable to microgrids with unpredictable renewable energy supply and with co-generation (that needs to consider both electricity and heat demand). In this paper, we study online algorithms for the microgrid generation scheduling problem with intermittent renewable energy sources and co-generation, with the goal of maximizing the cost-savings with local generation. Based on the insights from the structure of the offline optimal solution, we propose a class of competitive online algorithms, called CHASE (Competitive Heuristic Algorithm for Scheduling Energy-generation), that track the offline optimal in an online fashion. Under typical settings, we show that CHASE achieves the best competitive ratio among all deterministic online algorithms, and the ratio is no larger than a small constant 3.Comment: 26 pages, 13 figures. It will appear in Proc. of ACM SIGMETRICS, 201

    Scenario-based Stochastic Optimization for Energy and Flexibility Dispatch of a Microgrid

    Get PDF
    Energy storage is one of the most important components of microgrids with non-dispatchable generators and can offer both energy and flexibility services when the microgrid operates in grid-connected mode. This paper proposes a scenario-based stochastic optimization model that can be used to determine the energy and flexibility dispatch of a residential microgrid with solar and stationary battery systems. The objective of the model is to minimize the expected energy and peak power cost as well as the battery aging cost, while maximizing the expected revenue from flexibility. The formulated stochastic optimization problem is solved in rolling horizon with the uncertainty model being dynamically updated to consider the most recent forecast profiles for solar power and electricity demand. The benefits of the proposed approach were demonstrated by simulating the daily operation of a real building. The results showed that the estimated flexibility was successfully dispatched yielding an economic value of at least 7% of the operation cost of the building microgrid. The model can be used by flexibility providers to assess their flexibility and design a bidding strategy as well as by system operators to design incentives for flexibility providers

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi
    • …
    corecore