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Scenario-based Stochastic Optimization for Energy
and Flexibility Dispatch of a Microgrid

Kyriaki Antoniadou-Plytaria, Graduate Student Member, IEEE, David Steen, Le Anh Tuan, Member, IEEE,
Ola Carlson, Baraa Mohandes, Member, IEEE, and Mohammad Ali Fotouhi Ghazvini

Abstract—Energy storage is one of the most important com-
ponents of microgrids with non-dispatchable generators and can
offer both energy and flexibility services when the microgrid
operates in grid-connected mode. This paper proposes a scenario-
based stochastic optimization model that can be used to deter-
mine the energy and flexibility dispatch of a residential microgrid
with solar and stationary battery systems. The objective of the
model is to minimize the expected energy and peak power cost
as well as the battery aging cost, while maximizing the expected
revenue from flexibility. The formulated stochastic optimization
problem is solved in rolling horizon with the uncertainty model
being dynamically updated to consider the most recent forecast
profiles for solar power and electricity demand. The benefits
of the proposed approach were demonstrated by simulating
the daily operation of a real building. The results showed that
the estimated flexibility was successfully dispatched yielding an
economic value of at least 7% of the operation cost of the building
microgrid. The model can be used by flexibility providers to
assess their flexibility and design a bidding strategy as well as
by system operators to design incentives for flexibility providers.

Index Terms—Battery degradation, battery energy storage,
flexibility, microgrids, renewable energy, stochastic optimization.

NOMENCLATURE

Sets

H Set of time steps (simulation horizon).

Hf /Hf ′ Set of time steps belonging to the flexibility acti-

vation period.

I/K Set of discharging/charging sample data.

W Set of scenarios.

Indices

i/k Index for discharging/charging sample data.

t Index for time (discretization) steps.

w Index for scenarios.

Parameters

PL
t,w Active load.

PPV
t,w Active power from solar generation.

SoEmax Upper state-of-energy limit of the battery.

SoEmin Lower state-of-energy limit of the battery.

H Percentage of end-of-life retained battery capacity.

Λt Spot price [$/kWh].

Ci Grid charge for energy transmission [$/kWh].

Πw Probability of occurrence.
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Ce Reimbursement fee paid to producers of small-

scale generation [$/kWh].

∆t Length of time discretization step (time interval).

Emax Installed battery capacity [kWh].

CB,0 Purchase cost of battery [$].

Cpp Power-based grid tariff [$/MW/month].

EPV
t /EL

t Forecast error of PV generation/load demand.

σPV
t /σL

t Standard deviation of probability distribution of

the forecast error of PV generation/load demand.

ηcht /ηdist Charging/discharging efficiency of the battery.

P−

i /P+

i Sample measurements of output/input power

from/to the battery cells.

P dis
i /P ch

i Sample measurements of discharging/charging

power to/from the grid.

SoEdis
i Sample measurements of battery energy storage

state-of-energy during discharging.

SoEch
k Sample measurements of battery energy storage

state-of-energy during charging.

B1,B2 Cycle aging coefficients.

Cflex Flexibility price [$/kW].

Cpen Penalty [$/kW] for not providing the flexibility.

Ic Average charging C-rate.

PL
peak Upper capacity limit.

Variables

cim Expected cost of imported energy [$].

cp Expected cost of peak imported power [$].

f /f ′/f ′′ Value of the microgrid’s objective function.

fflex Value of the microgrid’s objective function when

there is a flexibility request.

pimt,w/pext,w Imported/exported power from/to the grid.

rex Expected revenue of exported energy [$].

rflex Expected revenue from offering flexibility [$].

p−t /p+t Output/input power from/to the battery cells.

pdist /pcht Discharging/charging power to/from the grid.

q Battery capacity loss in %.

soet State-of-energy of the battery energy storage.

xti/ytk Positive variables indicating choice of dischar-

ging/charging samples i/k.

βt,w Deviation from flexibility bid.

pfl,p Expected peak imported power during the flexibi-

lity activation period.

pflex Amount of active power flexibility.

pMax,net
w Peak net power exchange of scenario w during the

flexibility activation period.

cB Cost of cycle-based battery degradation in [$].



I. INTRODUCTION

THE increase in the integration of renewable-based gener-

ation also increases the flexibility needs of system oper-

ators [1]. To avoid the operation of expensive and fossil-fuel

based generators for the sole purpose of containing infrequent

high-peak periods, new flexibility sources are urgently needed.

These will also offer significant cost savings [2]. Such flexible

sources can include distributed energy resources (DERs) and

demand response resources at distribution system level, which

can offer demand-side flexibility services (FSs).

The distribution system operator (DSO) can act as the inter-

mediate responsible party for technical validation of demand-

side FSs traded in day-ahead and intra-day markets or s/he

can act as the flexibility procurer [3]. Local FSs can offer

both economic and sustainable solutions for the future chal-

lenges and unplanned issues concerning the distribution grid

operation. Although DSOs deem FSs less reliable compared

to network reinforcement/expansion, flexibility is a solution

that can be available more quickly than any network upgrade,

which can take up to 10-12 years. Moreover, demand-side

FSs can mitigate the impact of the high-peak conditions

incurring lower capital expenditures compared to the upgrade

of distribution grid infrastructure or even to other FSs such

as grid reconfiguration [4]. Even if the network reinforcement

costs cannot altogether be avoided, deferring these costs with

the support of FSs can be economically beneficial.

Flexibility offered by stationary battery energy storages

(BESs), in particular, is gaining ground, since it can mitigate

imbalances between load and supply close to real-time thanks

to the short ramp-up and ramp-down time. Moreover, if these

BESs are coupled together with renewable-based generation

at the distribution level, they can lead to the formation of

clusters that resemble grid-connected microgrids (MGs). These

MGs can be formed by a number of geographically contiguous

assets and consumers such as the residents of a building or a

neighborhood of buildings. These consumers that benefit from

the energy services (ESs) and/or FSs provided by the MG

are called MG customers. The ability of the MGs to integrate

smart, innovative technologies and modernize the existing grid

can facilitate FSs offered by the MG resources that can benefit

both the MG customers and the DSOs.

A. State-of-the-Art

The ideas of flexibility quantification and demand-side FSs

provided from DERs or DERs aggregators such as MG opera-

tors have recently gained attention, as is evident by a number

of studies e.g., [1], [4]–[11]. The real-time quantification of

flexibility, which is critical for modeling and implementing

any FS, is a research gap addressed by few works only

e.g., [5], [6]. Ref. [4] presents a rudimentary model of a

FS offered by a large heat pump with predetermined cost

of activation and discrete steps of flexibility amounts. The

MG flexibility bids are assumed to be equal to the predicted

power injected to the main grid in the hour-ahead bidding

process of [7], where solar irradiance uncertainty is considered

in the BES-based MG energy scheduling using a Markov

transition matrix and the recursive least-squares method for

predictions; the load uncertainties are disregarded. The use of

the BES as a buffer to correct hourly mismatches between

injected power and bids might require investments on larger

capacity or reduce income from other revenue streams, as less

capacity is released to provide services. Unlike aforementioned

studies, which use model-based approaches, machine learning

techniques are proposed in [8] to forecast the longevity of the

offered flexibility. Similarly, a regression model is used in [9]

to design the incentives that will increase the participation of

residential energy hubs in FSs. However, none of the studies

[5], [7]–[9] integrate the FS in the optimal economic dispatch

problem (note that in this paper, the terms scheduling and

dispatch are used interchangeably).

The impact of FSs in the economic energy scheduling of

MGs was considered in [1], [6], [10], [11]. The concept of the

flexibility envelopes is used in [6] to consider the feasibility

region of the real-time operational flexibility of a MG in its

optimal power dispatch, which is solved in receding (rolling)

horizon (RH). The power exchange with the main grid is

assumed to be known per time step, thus the BES flexibility

dispatch satisfies the MG needs to avoid the cost of dispatching

diesel generators or curtailing load. A scenario-based stochas-

tic optimization (SO) problem is solved for a grid-connected

MG in [10], [11], where the problem integrates flexibility

limits. In [10] these limits are time-varying and depend on

the net consumption of the rest of customers connected to

the same distribution feeder as the MG. In [11], these limits

are set by the DSO to minimize deviations from the approved

power exchange schedule, which is treated as a baseline power

profile. Similarly, the scheduled power exchange is used as a

baseline reference to define MG flexibility in [1], where a

cooperative controller based on model predictive control is

used to distribute the flexibility amount among a network of

MGs. However, using the MG schedule as a baseline to define

MG flexibility can be prone to manipulation [12] and having

to agree on a power exchange schedule can be problematic for

a real-world implementation of this FS.

As the above literature review showed, with regard to

flexibility, studies mostly focus on estimating the technically

available flexibility or take into account its economic impact

to the energy dispatch of the DERs. The technically available

flexibility refers to the estimated flexibility amounts that are

feasible according to the technical operation of the DERs as

in [1], [4], [6]–[9], [11]. It can also refer to flexibility which

is admissible by the network operation [13] and even further

restricted to secure the network’s reliability [14] or robustness

against uncertainties [15]. It does not, however, consider the

”willingness” of the FS provider (FSP) to offer a feasible

amount of flexibility i.e., the economically viable or optimal

flexibility. Even when studies embed FSs into optimal energy

scheduling models, the flexibility potential is not explicitly

calculated, leading to a lack of quantification and evaluation

of the flexibility, especially at distribution level [16]. The

flexibility amount that is dispatched solely depends on the

operational limits and the grid operator set-points, which are



usually arbitrarily chosen power exchange references. Thus,

these works do not give insight regarding the economic value

of intra-day flexibility in the presence of uncertainties for

either the FSP or the procurer of flexibility.

B. Paper Contributions and Structure

The advancement beyond state of the art brought by this

paper is the quantification of the MG flexibility using a

probabilistic approach. While the previously developed flexi-

bility quantification methodologies only evaluated the techni-

cally available flexibility, this paper introduces a methodology

that quantifies the flexibility amounts that are both feasible

and economically optimal in different uncertainty realizations

under a scenario-based SO model. Flexibility is explicitly

computed considering: 1) uncertainties (in both power supply

and demand), 2) the market-based energy scheduling strategy

of the MG, and 3) the model of a capacity limitation FS

[17], which does not depend on baseline reference profiles.

Moreover, thanks to the closed-loop (CL) control approach

applied for the MG energy scheduling, the effect of the

forecast error is minimized and the dispatch of the desired

flexibility is achieved to the extent that it is feasible.
Based on these, the paper made the following contributions:

• A SO model solved in RH scheme for the optimal market-

based energy scheduling of a MG taking into account

BES degradation and uncertainty related to the load de-

mand and photovoltaic (PV) power output. Unlike the RH

approach in [18], which also considers BES degradation

and uncertainties in the optimal BES scheduling solved

by stochastic dynamic programming, each update in the

forecast updates the whole BES control trajectory, while

the BES power is not discretized and thus the impact of

the forecast error is even further minimized.

• The integration of a local FS model in the energy schedul-

ing model. The resulting energy and flexibility dispatch

SO problem is used when there is a flexibility request

by the DSO to calculate the optimal flexibility bid (offer)

and the expected revenue from offering this FS.

• A methodology for stochastic assessment and dispatch

of technically and economically available flexibility. This

methodology can be used to dispatch intra-day flexibility

on a short notice (up to close to real-time) to alleviate un-

scheduled network congestions (i.e., unrelated to network

maintenance). It can also be used to define flexibility

evaluation metrics and can easily be adjusted to fit the

specific needs of the flexibility procurer.

• A case study that demonstrates the effect of BES capacity

and flexibility price on the dispatched flexibility and daily

economic value of flexibility for the MG customers.

It should be noted that the proposed methodology is useful

to both the flexibility procurers i.e., grid operators, and the

FSPs. The FSPs can take informed decisions regarding their

participation in FSs and they can use this methodology to ap-

propriately design their bidding strategy in flexibility markets.

The grid operators can assess end-user flexibility and estimate

its value in improving the network operation. Considering the

increased uncertainties introduced at the distribution level, it

is necessary to study the impact of a wide range of flexibility

prices in order to appropriately design incentive mechanisms

that ensure the dispatch of the flexibility as specified by the

needs of the system operation.

The rest of the paper is organized as follows. Section II

presents the mathematical formulation of the MG’s energy

scheduling optimization model. Section III explains the uncer-

tainty modeling, while Section IV elaborates on the process

of flexibility evaluation and dispatch. Simulation results are

given in Section V and conclusions are drawn in Section VI.

II. STOCHASTIC ENERGY AND FLEXIBILITY DISPATCH

This section presents the formulation of the SO model that is

used to solve the energy and flexibility dispatch problem for a

building MG with PV systems and a stationary BES, which is

used as a flexible resource. This problem is solved by the MG

energy management system (MG-EMS), which integrates the

SO model. The solution yields a set of BES power dispatch

set-points that maximize the economic benefits of the MG

customers, whose electricity demand is satisfied from the MG

resources and the upstream grid connection.

The MG operator has a contract with an electricity retail

provider, which enables energy trading at wholesale electricity

market price. At the same time, the MG operator has a contract

for flexibility provision with a DSO, which purchases and

utilizes this flexibility. The contract for ESs enables the MG

operator to reduce the energy costs performing load shifting

and energy price arbitrage. The contract for FSs allows the

DSO to request and buy a FS from the MG on a short

notice within a day to solve unexpected operation problems or

improve operation, utilizing the most recent information (e.g.,

forecasts). In addition, the DSO can buy this FS to satisfy

balancing needs of the transmission, although it should be

noted that the FS considered in this paper is only used by

the DSOs. If there are requirements on minimum flexibility

amounts that the MG does not meet, the FS can be offered

through an aggregator.

A. Scenario-based SO Model

The objective of this model is to minimize the MG’s

operation cost for the next look-ahead period considering

uncertainties in electricity load demand and PV generation.

Forecasts of PV generation and load, as well as information

about the statistical distribution of forecast errors, are used

as input to the integrated SO model. The time horizon length

is appropriately chosen to avoid the need of forecasting the

electricity prices. The MG cost includes the energy cost (which

can take a negative value, as the income from selling energy is

being subtracted), the cost due to peak power charge, the BES

degradation cost, and the income from offering flexibility.

1) Objective Function: As explained above, the objective

function is to minimize the expected (over the dispatch period)

cost fflex of a MG that can offer a FS and is given by:

minfflex = cim − rex + cp + cB − rflex, (1)



where

cim =
∑

t∈H

∑

w∈W

Πw(Λt + Ci)p
im
t,w∆t, (2)

rex =
∑

t∈H

∑

w∈W

Πw(Λt + Ce)p
ex
t,w∆t, (3)

rflex = Cflexp
flex = Cflex(P

L
peak − pfl,p). (4)

In (1), the first term (cim) is the expected cost of the

imported energy and the second term (rex) is the expected

revenue associated with the energy exported to the grid. The

term cB denotes the cost of BES degradation (expressed as

capacity loss) due to cycle aging, cp is the expected cost

for the peak power drawn from the main grid, and rflex

is the expected reward for providing flexibility. Eq. (2)–(4)

analytically present the values of cim, rex, and rflex. The

scheduling horizon and the length of time intervals are shown

by H and ∆t, respectively. The positive variables pimt,w/pext,w
are the imported/exported power from/to the grid at time step

t and scenario w, while Πw is the probability of occurrence

of scenario w. The electricity wholesale market is denoted by

Λt, while Ci is the grid charge for energy transmission (grid

utilization), and Ce is the reimbursement fee paid by the DSO

as an incentive to reduce network losses. To calculate the value

of cp the following constraint is added

cp ≥ Cpp

∑

w∈W

Πwp
im
t,w, ∀t ∈ H, (5)

where the power tariff Cpp is linked to the maximum average

power of the studied period (measured per time step ∆t). The

positive variable pflex denotes the amount of active power

flexibility (average value over ∆t), which is also the flexibility

bid, Cflex is the flexibility price, and pfl,p is the expected

peak imported power during the flexibility activation period.

Note that the amount of flexibility is calculated in terms of

power capacity reduction. When flexibility is activated, the

MG resources modify their schedule to guarantee that the peak

imported power will not exceed the ”new” capacity PL
peak −

pflex provided by the FS. The parameter PL
peak should be

based on a value that the DSO and the MG operator can easily

agree upon such as e.g., the capacity at the grid connection

point, so that the flexibility can be quantified in a reliable

manner. Fig. 1 depicts pflex and, in addition, it shows an

illustrative diagram of the MG resources and the power flows

among the resources and the upstream connected AC grid.
2) Power Balance: As can be seen in Fig. 1, the converter

that couples together the BES and the PV systems has bi-

directional operation. Therefore, both the PV power and the

BES discharging power can supply the building demand and

be exported to the AC grid. Moreover, the BES can be charged

through both the upstream AC grid and the PV systems. Thus,

the power balance of the MG is given by

PPV
t,w +pdist −pcht = pext,w−pimt,w+PL

t,w, ∀t ∈ H, ∀w ∈ W, (6)

where PPV
t,w , PL

t,w, and the positive variables pcht /pdist respec-

tively refer to PV generation, electric power consumption of

BES

PVs

Electric

AC grid

load

Pt,w
PV

pt
ch pt

dis

pt,w
ex

pt,w
im

Pt,w
L

Directions of power flow

p
flex

Ppeak
L

Time steps

p     t
im

pt
ex

Fig. 1: MG resources, power flows and flexibility assessment.

the building, and charging/discharging power of the BES. The

losses of the grid side converter are ignored.

3) BES Model: The BES model is given by (7)–(17). This

is a measurement-based model, which was first presented in

[19] and later expanded in [20] in order to include the BES

degradation model presented in [21] and modified in [22]

and [23] to express the BES capacity loss as a function of

cumulative energy throughput. The model uses a sampling-

based approach on data from charging/discharging curves in

order to capture the behavior of an actual BES more accurately

compared to typical linear BES models used in optimization

models. The parameters SoEch
k , P+

k , P ch
k , SoEdis

i , P−

i , P dis
i

take the values of the sample data. The positive variables

p−t /p+t represent power output/input from/to the BES cells

respectively, before/after BES losses have been taken into ac-

count. Moreover, Emax is the installed BES capacity and soet
is the state-of-energy (SoE), constrained by the lower/upper

limits denoted by SoEmin/SoEmax (these limits are typically

suggested by manufacturers to increase the BES lifetime

[24], [25]). The continuous variables xi,t and yk,t, which

are associated respectively with the choice of discharging or

charging sample data, are used to create convex combinations

of soet, p
+
t , pcht . This model takes into account the variable

(with respect to BES power and SoE) charging/discharging

efficiencies of the BES system (both internal BES losses and

DC/DC converter losses are considered), which are defined as

ηcht = p+t /p
ch
t and ηdist = pdist /p−t , respectively, ∀t ∈ H [19].

soet = soet−1 +
p+t−1∆t

Emax

−
p−t−1∆t

Emax

, ∀t ∈ H (7)

SoEmin ≤ soet ≤ SoEmax, ∀t ∈ H, (8)

p−t =
∑

i∈I

P−

i xti, ∀t ∈ H, (9)

pdist =
∑

i∈I

P dis
i xti, ∀t ∈ H, (10)

p+t =
∑

k∈K

P+

k ytk, ∀t ∈ H, (11)

pcht =
∑

k∈K

P ch
k ytk, ∀t ∈ H, (12)



soet =
∑

i∈I

SoEdis
i xti +

∑

k∈K

SoEch
k ytk, ∀t ∈ H, (13)

I
∑

i

xi,t = 1, 0 ≤ xi,t ≤ 1, ∀t ∈ H, (14)

K
∑

k

yk,t = 1, 0 ≤ yk,t ≤ 1, ∀t ∈ H. (15)

The BES capacity loss (%) due to cycle aging is given by:

q = B1e
B2Ic

∑

t∈H

(p−t + p+t )∆t. (16)

The parameters B1 and B2 were obtained from empirical

fitting of experimental data, while the parameter Ic is the daily

average C-rate. The BES cost used in (1) is calculated as:

cB =
CB,0q

100%−H
, (17)

where q is multiplied with the installation cost CB,0 and

divided by the maximum acceptable capacity loss (100%−H)

before the BES is retired (H is the end-of-life retained capacity

percentage in %). Thus, if q = 100% −H then cB = CB,0,

since the BES must be replaced.

4) FS Model: The type of FS considered in this study is a

capacity limitation service as introduced in [12]. Constraints

(18)–(19) are added to model this FS:

pfl,p ≥
∑

w∈W

Πwp
Max,im
w , (18)

pMax,net
w ≥ (pimt,w − pext,w), ∀w ∈ W, ∀t ∈ Hf , (19)

where the variable pMax,net
w is the net power peak of scenario

w during the flexibility activation period Hf ⊆ H. With this

FS, when the FSP (in this case the MG operator) activates

the flexibility, the dispatch of the BES power seeks to satisfy

the flexibility bid pflex, which will be achieved if the MG net

power peak during the flexibility activation period does not

exceed the value of variable pfl,p.

B. RH Approach

The model presented in Section II-A can be used to solve

the SO problem either in open-loop (OL) or in CL i.e., in

RH, as can be seen in Fig. 2. In OL control, the problem is

solved once to determine the BES operation set-points which

will be applied in the next time period. In CL control, only

the next time-step optimal set-points are implemented. Then,

the scheduling horizon is shifted and the same problem (that

was solved only once in the OL control) is solved again. This

is repeated multiple times (depending on the choice of time

discretization step) to obtain the BES set-points of the same

time period as in OL. After the time horizon is shifted and

before the next simulation, the forecast profiles are updated

to consider the most recently available forecasts and include

the part of the time horizon that was not considered in the

previous simulation. Note here that the term RH often appears

under the name ”model predictive control” in literature [26],
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Update optimization model
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Fig. 2: Flowchart of the MG energy and flexibility dispatch.

typically when the problem is formulated using state-space

representation instead of mathematical programming, which

was used for the formulation of the SO model of this paper.

Most studies apply SO in OL. Even though the RH ap-

proach reduces the effect of the forecast errors by dynamically

updating the set-points, it requires more frequent simulations,

which can be an issue as SO has higher computation time

than deterministic optimization. Similar to [27], both the SO

and the RH approach will be used in this paper to benefit

from the feedback, which is particularly important for close

to real-time control. In order to reduce the size of the SO

problem and avoid scalability issues, deterministic control

variables were used in the model in Section II-A i.e., the

scheduled BES power is independent of the scenario. Since

the RH approach is used, it is only the next time-step control

decisions that are implemented after each simulation and the

deterministic control trajectory can be updated considering

the latest forecasts available with every new simulation. The

rest of the control trajectory of each simulation is advisory.

The MG power import and export, which are dependent on

the BES power (deterministic variable) and the electricity

demand and PV generation (stochastic input parameters), are

the stochastic decision variables of the optimization problem.

Despite the advantages of the RH approach, the OL control can

be useful for practical applications in case of failure to receive

feedback. Then, the advisory BES power set-points obtained

from the last solution of the SO problem will be applied, thus

implementing OL control until the CL control can be restored.



III. UNCERTAINTY MODELING

The main uncertainty modeling approaches include [28]:

1) scenario-based SO and RO, where it is assumed that

uncertainty is adequately characterized by a set of future

event scenarios each of them associated with the probability

of occurrence of the event, 2) adaptive RO and chance-

constrained optimization (CCO), which use uncertainty sets to

constrain the operating points, 3) Markov decision processes

(MDPs), where the uncertainty is only modeled for the next-

step decision, and 4) reinforcement learning (RL), which

observes (instead of explicitly modeling) uncertainty.

A. Comparative Discussion of Modeling Approaches

All the previously mentioned approaches have been used

in MG energy management studies. Depending on the appli-

cation they can offer advantages regarding computation time,

feasibility, and solution cost.

1) Optimization Approaches: The main drawbacks of RO

and CCO are the too conservative (and by extent costly)

solutions of the former and the arbitrarily chosen constraint

violation levels of the latter. On the other hand, one major

benefit of RO and CCO against SO is that they can yield sim-

plified equivalent reformulations of the original optimization

problem and reduce its complexity. However, the proposed SO

model already considerably reduces the size of the problem.

This is achieved by eliminating the “wait and see” decision

variables which are used in classical SO; the future scheduling

plan consists of deterministic control variables and the only

stochastic variables are the imported and exported MG power

which are affected by the deterministic control variables and

the stochastic inputs (load, PV generation). In other words,

the model considers lookahead uncertainty thanks to the

stochastic formulation and, instead of considering real-time

uncertainty realization, control adjustments are dynamically

being implemented with the RH approach to deal with close

to real-time uncertainty. In addition, the scenario generation

and reduction technique (see Section III-B) further improves

the performance of the model by reducing its size. Therefore,

it was computationally efficient to perform SO in RH with

the proposed model. Since the performance of RO and CCO

is heavily dependent on the underlying characteristics of the

probability distribution function [29], [30], their computational

advantage would be trivial in this case.

Apart from faster execution, thanks to its deterministic

control the proposed SO model also offers certainty of feasible

solutions in out-of-sample analysis assuming that the system

is properly dimensioned to avoid exceeding the capacity at

the point of common coupling with the main grid. Therefore,

the other advantage of CCO against classical scenario-based

SO, which is the guaranteed satisfaction of the problem’s

constraints for a specific percentage of the scenarios [31] in an

out-of-sample analysis, is not relevant for the proposed model.

2) MDPs: In this case, the problem is formulated in state-

space representation and the system state as well as the control

output need to be discretized. This leads to the problem

well-known as ”curse of dimensionality” i.e., to improve the

quality of the control more discrete points must be considered

which crucially expands the size and the computation time.

Formulating the MG energys scheduling as an MDP also

enables to solve the problem in RH, as was done in [18], by

changing the control strategy or trajectory at each time step

depending on the latest forecast information. However, these

strategies are pre-determined, whereas solving the SO problem

in RH results in a new optimal strategy at each time step.

3) RL: Built on MDP, the optimal strategies are defined

without full knowledge of the uncertainty model [32] (or even

the MG system). They are rather defined through observation

and, therefore, a lot of information is needed as an input to

train the RL models, so that they can choose the best ”action”

i.e., next-step control decision, ”on the go”. Similar to MDP,

the control actions are pre-determined unless the RL model is

trained online, which is typically time-consuming.

B. Scenario Generation and Reduction

In order to model stochasticity in scenario-based optimiza-

tion, the probability distribution of forecast errors of the

variable input data must be known. Some studies assume that

these errors follow Gaussian distributions [11], [33]. Others

use scenario generation algorithms to capture stochasticity

and correlations among historical data [34]. To represent the

uncertainty associated with the input values in this paper,

the day-ahead forecast errors of PV generation and power

consumption are assumed to follow the Gaussian distributions

given as EPV
t ∼ N(0, 0.12) and EL

t ∼ N(0, 0.052), respec-

tively, where the standard deviations σPV
t = 0.1, σL

t = 0.05
were adopted from the day-ahead forecast error distributions

of [11], [33]. The accuracy of the forecast values progressively

deteriorates for the time steps further ahead in time, which is

why B. V. Solanki et al. [35] used non-uniform time resolution.

In this paper, the horizon is uniform; however, the standard

deviations of the distributions gradually increase to account

for the reduction of the intra-day accuracy. Thus, for the time

steps until the next hour ahead as well as for the time steps

after the first hour and until six hours ahead, they are equal to

10%σPV
t /10%σL

t and 50%σPV
t /50%σL

t , respectively. A more

detailed uncertainty representation is beyond the scope of this

paper and can be a part of future research.

Based on the above-mentioned distributions, a number of

scenarios are generated using the Monte Carlo (MC) method

i.e., random sampling of the input variables (taken from their

most recently updated forecasts) with the added noise to

represent forecast error. The forecast profiles have the same

time resolution as the time horizon of the simulation i.e., the

same number of time discretization steps, and are used as the

base scenarios. Since the forecasts are not perfect, a Gaussian

random number generator is used to generate an error for

each time step of the available load/PV forecast profiles. The

values of the base scenarios are then adjusted according to the

generated errors and the outcome is one future event scenario

of electricity load and PV generation. This process is then re-

peated to generate all scenarios. After the scenario generation,

a mix of fast backward/forward methods in the SCENRED tool



Fig. 3: Process of flexibility dispatch using the RH approach.

of GAMS is used to create a reduced number of scenarios (not

equiprobable) which are representative of the real variability

of the input values, without substantially compromising the

accuracy of the results. A different probability of occurrence is

assigned to each scenario by the scenario reduction technique.

IV. FLEXIBILITY ASSESSMENT AND DISPATCH

The methodology of flexibility evaluation and dispatch is

shown in Fig. 3 with indicative milestones marking the pro-

cess. This methodology corresponds to an intra-day framework

of procuring flexibility. The depicted time discretization step is

∆t = 15 minutes, therefore the energy and flexibility dispatch

problem for Day 1 comprises 96 simulations (solutions of the

SO problem). As shown in Fig. 3, one simulation is performed

at each time step τ to solve the following SO problem

minf =



















f ′ (21) s.t. (2)–(17) τ < t0

fflex (1) s.t. (2)–(19) τ = t0

f ′′ (22) s.t. (2)–(17),(23),(24) t0 < τ ≤ t2

f ′ (21) s.t. (2)–(17) t2 > τ

, (20)

f ′ = cim − rex + cp + cB , (21)

f ′′ = cim − rex + cp + cB −
∑

t∈Hf′

∑

w∈W

Πwβt,wCpen, (22)

βt,w ≤ P fl,p − (pimt,w − pext,w), ∀w ∈ W, ∀t ∈ Hf ′ (23)

βt,w ≤ 0, ∀w ∈ W, ∀t ∈ Hf ′ (24)

where t0 and t2 respectively denote the notification time of

flexibility request and the end of the flexibility activation

period. The MG operator implements the optimal energy

schedule obtained from solving the SO problem given by (20)

for τ < t0 at each time step τ . If the DSO needs to buy

flexibility, a request is sent at τ = t0 to the MG-EMS, which

responds with the amount pflex and a stochastic assessment of

the flexibility that can be offered by solving (20) for τ = t0.

The response is sent directly after the request e.g., in Fig.

3, the flexibility request along with information about the

activation period is sent at 08:00 (Simulation 48) and the

response is sent to the DSO before the next simulation (at

08:15). The MG-EMS is also notified about the acceptance or

decline of pflex before the next simulation. If it is accepted,

the MG solves (20) for t0 < τ ≤ t2 i.e., until the simulation

horizon is shifted outside of the activation period (note that

Hf ′ in (22)–(24) refers to the part of the scheduling period

that belongs to the flexibility period, which shrinks as the time

horizon shifts). In Fig. 3, this problem, which minimizes the

mismatch between flexibility bid and dispatch, is solved at

each simulation between 08:15-22:00 i.e., Simulations 33-88.

Thus, the MG-EMS adjusts its control to provide the flexibility

bid both before and during the flexibility activation period

which starts at t1. The mismatch is minimized by penalizing

the deviation between the net power and the expected net

power peak pfl,p, which is now entered as a parameter (P fl,p).

The non-negative term βt,w in (22)–(24) represents the

deviation between the expected peak and dispatched net power

that should be penalized at each time step. If the net power

is below its expected peak P fl,p, which was calculated at

t0 to define the flexibility bid, this deviation should not be

penalized. Since the right-side term in (23) becomes positive

in this case, (24) becomes the binding constraint and βt,w

becomes equal to zero because a negative term would increase

the value of the cost function f ′′ given by (22). If the net power

exceeds the bid, then (23) is binding and βt,w is negative

taking the value of P fl,p − (pimt,w − pext,w). This quantity is

multiplied by the penalty Cpen adding a cost in f ′′.

After the look-ahead horizon is shifted past the end of the

flexibility activation period, the MG-EMS continues solving

the energy scheduling problem given by (20) for τ < t0. The

same problem is also solved after the MG receives a decline

of the offered flexibility until there is a new flexibility request.

It should be noted that the proposed process of flexibility

dispatch is independent of the notification time or the duration

of the activation period and can even be used for close to real-

time flexibility dispatch, when a small ∆t is used. Moreover,

the MG response and the notification of acceptance/decline

from DSO can occur later than t0. In that case, the MG-EMS

will repeatedly solve (20) for τ = t0 to optimize the flexibility

offer at each time step until it sends the response to the DSO.

Each simulation of the RH process performed at τ can be

described by the following steps:

• Step 1: The look-ahead horizon extends to include all

hours where the electricity price is known, up to a

maximum of 24 hours. E.g., in Fig. 3, the initially 24-hour

time horizon is continuously reduced by one time step for

Simulations 2-51 and then extends again to 24 hours until

Simulation 96, since the day-ahead spot market prices are

updated at about 12:45 on the previous day [36].

• Step 2: Obtain the day-ahead latest updated forecasts of

load and PV power output which have the same time

resolution as the considered scheduling time horizon.

Reduce the length if necessary, update the base scenario,

and generate new scenarios.

• Step 3: Solve the SO problem according to (20) using

the generated scenarios, the price data, and the SoE of

the BES that was obtained from the previous simulation.

These are the input data illustrated in Fig. 2.

• Step 4: Obtain and update set-points pdist /pcht for t = 1.

Shift the time horizon by ∆t. Go to Step 1 at τ + 1.



V. SIMULATION RESULTS

The optimal MG energy and flexibility dispatch was simu-

lated for a day considering a grid-connected residential MG as

the test system. The optimization models were implemented in

GAMS interfaced with CPLEX to solve the linear program-

ming (LP) problems formulated in Section IV. Simulations

were performed according to the test cases described in Table

I on a PC with 4.2 GHz Intel(R) Core(TM) i7-7700K CPU

and 64 GB of RAM.

A. Test System, Input Data, and Parameters

Table II lists the MG characteristics. The electricity load,

PV generation, and BES data were obtained from [37], while

electricity prices were taken from the Nord Pool market [36]

for bidding area 3 of Sweden. The energy and power tariffs

(the latter was scaled down to apply to the chosen time

horizon) as well as the reimbursement fee were taken from the

website of the local DSO [38]. The simulations were repeated

for different BES capacities, for comparison and analysis.

The capacity at the connection point was PL
peak = 43.65

kW, the time discretization step was ∆t = 15 minutes, and the

penalty was Cpen = 180$/MW [39]. The values of the BES

model parameters in (8) and (16)–(17) were: B1 = 0.0013,

B2 = 0.3534, Ic = 0.3, H = 80%, SoEmin = 10%,

SoEmax = 90%, and the initial SoE was 50%. The flexibility

activation periods were between 07:00-20:00, as was requested

from small to medium-sized companies offering flexibility in

[40]. A base Cflex was calculated according to the following

assumption: it was assumed that the revenue from offering

1 kW of pflex would be equal to selling 1 kWh of energy

at average spot market price at each hour of the activation

period. The simulations were conducted considering different

flexibility prices within the range of 50%-150% of this base

Cflex, which was different for each case (depending on the

length of Hf and the method of flexibility dispatch). For

each simulation, 2000 scenarios of PV generation and load

were generated using the MC method and the probability

distributions and their parameters mentioned in Section III.

These were then reduced to 120 scenarios.

B. Case Studies: Stochastic Assessment of Flexibility

The stochastic assessment of flexibility was performed at

time step τ = t0 i.e., right after the notification of the

flexibility request. The results are obtained by solving at

τ = t0 the respective SO problem as defined in (20).

1) Cases A & B: The simulations showed that pflex gen-

erally increased as the BES size increased, which can be

observed in Fig. 4 that presents the stochastic assessment

of flexibility for Cases A-B at their base Cflex for a 7.2,

14.4, and 18 kWh BES. The actual amount of flexibility that

the MG provided to the grid in each of the 120 scenarios

is depicted as a histogram plot. The x-axis represents the

amount of dispatched flexibility PL
peak−max(pimt,w, ∀w ∈ W),

where max(pimt,w) refers to the activation period Hf . The y-

axis reports the probability of achieving a specific amount of

flexibility (in one or more of the 120 scenarios). Thus, the

percentage reported in the y-axis is the weighted sum of the

scenarios where a given flexibility amount occurs, divided by

the weighted sum of all 120 scenarios (which has a 100%

probability of occurrence). The weights are the probabilities of

occurrence of each scenario assigned by the scenario reduction

technique (see Section III). The vertical dashed line in each

plot of Fig. 4 marks the value of pflex implying that the

optimal solution involves scenarios where more flexibility is

provided, or where the MG might fall short of meeting its bid.

Under circumstances, the MG with the 7.2 kWh BES could

offer slightly more flexibility than the MG with the 14.4 kWh

BES (compare Fig. 4 (d) and (e)). In this study, this happened

due to the late notification time in Case B. The results are

illustrated in Fig. 5 (a) and (b) which present the corresponding

schedules of Fig. 4 (d) and (e). In Fig. 5, the power profiles

are plotted as bar graphs on the left y-axis (positive values

correspond to net power consumption and/or BES charging)

and the SoE is given as a line plot on the right y-axis. As can

be seen, both BESs stayed idle at their initial SoE until τ = t0
in preparation for the highest consumption period predicted at

τ > t2 and both were almost at SoEmin at the end of the day.

Hence, it is evident that the 7.2 kWh BES could not decrease

energy and peak power cost as much as the 14.4 kWh BES

so the revenue from the FS was more important in reducing

the total cost under the considered Cflex. The 14.4 kWh BES

could benefit more from ESs i.e., energy and peak power cost

reduction; therefore, more capacity was used for that purpose

at the expense of offering flexibility. In Fig. 5 (b) its injected

power resulted in up to 2-3 kW lower MG imported power at

time steps 83-90 in comparison to Fig. 5 (a), while offering

at the same time flexibility only 400 W less than the amount

offered by the 7.2 kWh BES. The 18 kWh BES allocated

slightly more capacity than the 14.4 kWh BES for the ESs

and the rest was used for the FS resulting in a larger pflex.

Comparing Fig. 4 (d) with (a) and Fig. 4 (f) with (c) it can

be seen that pflex could be larger in Case B, even though

the notification of flexibility request was much closer to the

activation period. An explanation for this is that the uncertainty

regarding the flexibility dispatch is lower in Case B, since

the activation period is shorter and much closer to τ = t0;

therefore, the input data for t1 ≤ τ ≤ t2 are less affected by

forecast errors. Despite that, the probability of dispatching the

flexibility according to the bid was actually higher in Case A.

2) Case C: In this case, the flexibility is dispatched per

time step and the flexibility bid is indexed by t (pflext ). The

simulations showed that with the increase in Cflex the prob-

abilities of dispatching certain flexibility amounts at the same

time steps would also increase. However, this was not always

straightforward, as increasing the probability at one step could

come at the expense of the probability at another step. This can

be seen in Fig. 6 which presents the probability of flexibility

dispatch for Emax =7.2 kW at Cflex =$0.01250/kW and

Cflex =$0.01875/kW. Eq. (4) was modified as:

rflex =
∑

t∈Hf

Cflexp
flex
t =

∑

t∈Hf

Cflex(P
L
peak − pfl,pt ), (25)



TABLE I: Test Cases

Time of Notification Flexibility Activation Period Flexibility Assessment and Dispatch

Case A 08:00 12:00-20:00 Flexibility amount over whole activation period

Case B 18:00 19:00-20:00 Flexibility amount over whole activation period

Case C 08:00 12:00-20:00 Flexibility amount per time step of activation period
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Fig. 4: The probability distribution of dispatched flexibility and the flexibility bid (dashed line) of the MG operator, considering

the base Cflex for each case. Fig. (a)-(c) correspond to Case A and Fig. (d)-(f) correspond to Case B.
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Fig. 5: MG power flows for Case B with Cflex = 0.05$/kW .

TABLE II: Load Demand and DERs of the MG

BES capacity (kWh) 7.2, 14.4, 18

BES energy to power ratio (h) 1.2

Daily electricity consumption (kWh) 162-384

PV capacity (kWp) 13

Peak demand (kW) 32

where pfl,pt , P fl,p
t are also indexed by t and refer to the

expected imported power at each time step. The SO problem

solved at τ = t0 is given by the modified objective function

fflex s.t. (2)–(17) and (26):

pfl,pt ≥
∑

w∈W

Πw(p
im
t,w − pext,w), ∀t ∈ Hf . (26)

The probability of flexibility dispatch in Fig. 6 is shown

in the cell numbers of the heatmaps. These correspond to the

probability of dispatching a flexibility amount at least equal

to the value shown in the x-axis, at the time step shown in the

y-axis. The MG-EMS guaranteed the dispatch of at least 30

kW during the activation period except for time steps 55-58

and at least 35 kW from time step 66 onward for both prices

presented in Fig. 6. As can be seen in Fig. 6, the probability

of dispatching 30 kW at time step 56 and 35 kW at time

steps 63–64 increases with the increase in the price. At the

same time, though, the respective probabilities decrease for

the amount of 30 kW at time steps 55, 57–58 and the amount

of 35 kW at time step 65.

C. Economic Value of Flexibility Dispatch

The probability of dispatching the flexibility amount(s)

calculated at τ = t0 can substantially increase when the SO
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Fig. 6: The probability distribution of dispatched flexibility per

time step (Case C, Emax =7.2 kW) for two different prices.

problem is solved in RH, depending on the chosen penalty

and the technical constraints of the MG resources.

1) Benefit of Solving SO in RH: For all considered values of

Cflex and Emax in Cases A-C, the flexibility amount (pflex)

was successfully dispatched. This demonstrated the value of

combining SO with the RH approach, which contributed to

avoiding the payment of penalties and increased the value of

flexibility for the MG operator. The value of flexibility, which

was calculated as the cost difference of the daily MG schedule

with and without the FS assuming that the base scenario was

realized, is shown in Fig. 7 along with the degradation cost

and the flexibility bid w.r.t Cflex. The value of flexibility

was also estimated for the DSO assuming that s/he buys the

MG flexibility to reduce the subscription fee that guarantees a

certain power level. To calculate this value the cost of buying

flexibility was subtracted from the cost reduction achieved by

reducing the MG peak imported power using the FS.

2) Factors Affecting the Value of Flexibility: Two important

factors associated with the value of flexibility are scrutinized:

the BES size and the flexibility dispatch parameters t0, t1, t2
i.e., the time of notification and the duration of the activation

period. The results indicated that the proposed FS can offer

value to both the MG customers and the DSO when flexibility

is dispatched over the whole activation period i.e., in Cases

A-B, with the MG’s value of flexibility amounting to at least

56% and 7% of the daily MG operation cost, respectively.

As can be seen in Fig. 7 (a), (d), and (g), the MG’s value of

flexibility increased linearly wrt Cflex, while the BES size did

not significantly affect the MG’s daily value of flexibility. This

shows that the MG-EMS favored participation in ESs (energy

arbitrage, peak shaving) instead of the FS within the studied

range of Cflex. The BES size played a more important role

in the DSO’s value. In fact, in Cases A-B, the larger BESs

usually increased the economic benefits for the DSO. Case

C offered no benefit to the DSO even though the value of

flexibility was considerably higher for the MG.

Analyzing the results in Fig. 7 (b), (e), and (h), it can be

seen that a higher Cflex and a larger BES lead to larger pflex

in Case A. In Case B, however, the shorter notice limited pflex

from the smaller BES, which did not exceed the amount of

34.7 kW despite the increase in Cflex. Nevertheless, this BES

could offer more flexibility than the 14.4 kWh BES (and even

the 18 kWh BES at very low Cflex) for reasons explained

in Section V-B1 i.e., higher need to increase value through

the FS due to lower potential for energy and peak power cost

reduction (or profit from energy arbitrage). Fig. 7 (h) shows the

average flexibility bids and their range for the 7.2 kWh BES.

The results from other BESs are omitted for clarity purposes,

however, they exhibit the same trend, such that the BES size

and Cflex do not affect the average pflex in Case C.

3) Effect of Degradation: Although with the tested flexibi-

lity prices the value of flexibility dispatch remained practically

unaffected by the BES size as can be seen in Fig. 7 (a), (d),

and (g), the faster degradation of smaller BESs suggests that

the investment on the size of a BES that will provide FSs

should be determined considering the frequency of providing

these FSs. Fig. 7 (c), (f), (i) depict the degradation cost as a

percentage of the BES’s purchase cost, where both cycle and

calendar aging were considered. Calendar aging was assessed

after the simulations, as it was not included in the objective

function (see [20]), which explains why e.g., in Fig. 7 (c),

there is a significant decrease in the degradation cost of the

7.2 kWh BES when Cflex increases. Comparing the different

BES sizes it can clearly be seen that the induced aging is worse

for the smallest BES. This is more notable in Fig. 7 (c) and (f)

and it can be attributed to the increased utilization (cycling)

in an attempt to maximize profit from both ESs and FSs. If

the FS is event-based (e.g., requested during extreme weather

conditions or unexpected failures) the effect of degradation

would be trivial. Otherwise, long-term planning studies are

required to assess whether the faster degradation of smaller

BESs could result in a reduced value of their flexibility.

An example of the different BES utilization is shown in

Fig. 8, which depicts the MG power flows for Case A,

Cflex = 0.4$/kW and Emax = 14.4 kWh, comparing the

results with and without the FS. Without the FS, the BES

was only discharged after the flexibility period, when peak

demand was expected (time steps 86-90). When the MG

offered flexibility (Fig. 8 (a)), the BES’s utilization increased,

as it started charging at τ = t0 to be able to inject power both

at time steps 86-90 and within the activation period.

D. Number of Scenarios and Cost of Optimal Solution

Since all the studied SO problems were linear, the con-

vergence to an optimal solution is guaranteed at each time

step. However, the optimality with respect to all possible

uncertainty realizations cannot be guaranteed. Scenario-based

approaches are based on samples and, therefore, there is a

trade-off between the cost of the solution and the execution

time. A higher number of scenarios can lead to a lower cost

i.e., a solution closer to the optimal solution, however, it also

increases the computation time. To investigate the relation-

ship between scenario number, optimality and computation

time, a sensitivity analysis was performed for Case A, with

Emax =7.2 kWh and Cflex = 0.4 $/kW. The results are

given in Table III, where the performance of the case study

implemented in this work is shown in bold and the negative

cost value refers to profit. Since the sampling happens at two
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Fig. 7: The flexibility bid, value of flexibility, and BES degradation cost w.r.t. Cflex for Cases A-C.

stages in this paper i.e., first with the MC method and then

with the scenario reduction, the analysis accounted for both

sample sizes. The execution time refers to the maximum time

that was needed for scenario generation, scenario reduction (if

applicable), and for the solution of the SO problem.

It can be observed from Table III that scenario reduction,

when considered, accounts for the biggest part in total exe-

cution time. For example, a SO problem with 80 scenarios is

solved in 9, 34, and 59 sec when obtained from a full set of

2000, 4000, and 5000 scenarios, respectively. Nevertheless, the

scenario reduction leads to a significant decrease in execution

time, as it reduces the number of variables of the SO problem.

The daily cost, which is shown in the last column of Table III,

was not directly comparable for the studied sizes of scenario

sets, even when no scenario reduction was implemented. This

occurs due to the random scenario generation and the RH,

since 96 solutions of the SO problem are needed to obtain

the daily cost. Despite that, the cost did not vary significantly,

and the results yielded a maximum variation of 1.7% from the

average cost obtained by these scenario sets.

The results demonstrated that the number of scenarios used

in the case study was sufficient for the study’s MG, as the cost

did not deviate considerably among the scenario sets of the

sensitivity analysis. Although there was no proven economic

TABLE III: Scenario Sensitivity Analysis for Case A,

Emax =7.2 kWh, Cflex = 0.4 $/kW.

Full Reduction Reduced Execution Cost ($)

set set time (sec)

5000 no – 111 -3.58

5000 yes 120 75 -3.66

5000 yes 80 59 -3.69

4000 no – 81 -3.57

4000 yes 120 45 -3.66

4000 yes 80 34 -3.69

2000 no – 24 -3.58

2000 yes 120 11 -3.68

2000 yes 80 9 -3.69

benefit, the larger sets of Table III could also be used, since

their respective solution time was compatible with the chosen

time step. Larger sets might not be preferable for real-world

applications, however, as communication delays associated

with input and output data must also be accounted for.

VI. CONCLUSIONS

This paper presents a scenario-based SO model to solve

the MG energy and flexibility dispatch problem considering

uncertainties in PV generation and electric load demand. A
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Fig. 8: MG power flows with and without FS for Case A with

Cflex = 0.4$/kW and Emax = 14.4 kWh.

detailed model of a FS known as capacity limitation was

also incorporated in the proposed model. The SO model was

combined with the RH approach, which ensured the dispatch

of flexibility according to the bid in all simulations for Cases

A-C. Thus, the payment of penalties was avoided, which

increased the economic value of flexibility for the MG. This

value was at least 56% and 7% of the daily MG operation

cost under the considered Cflex in Cases A-B, respectively.

These cases, unlike Case C, also benefited the DSO suggesting

that DSOs might have little to gain from high-resolution

flexibility dispatch for the purpose of reducing the daily peak.

Increasing the BES size did not significantly affect the daily

value of MG’s flexibility, however, long-term studies could

give different results, as the degradation cost was found to be

smaller with the larger BESs. The simulations also showed that

the 7.2 kWh BES could provide more flexibility than the 14.4

kWh BES depending on the notification time and Cflex, as the

MG would benefit more from using the additional capacity of

the larger BES for ESs instead of the FS.

The methodology for flexibility assessment and dispatch,

which was introduced to test the performance of the developed

model, is versatile and can be applied to a wide range of

case studies e.g., with different notification times or periods

of flexibility activation. This model can be used by the MG

operators to quantify the potential and assess the value of

MG flexibility. The same model with minor modifications

can also be used to derive the bidding curve of the MG in

case the DSO operates a local flexibility market to procure

flexibility, which is a suggestion for future studies. Aside from

the MG operators, the grid operators can also benefit from the

methodology of flexibility assessment, which can contribute

to formulating the flexibility prices or incentives that would

lead to the dispatch of the desired flexibility depending on

the system’s needs. In addition, the computational efficiency

of the proposed approach confirms that flexibility can be

dispatched promptly (close to real-time) within a day, which

could contribute to the reduction of grid capacity reserves if

multiple MGs participate in the provision of the FS.

REFERENCES

[1] F. Garcia-Torres et al., “Cooperative optimization of networked mi-
crogrids for supporting grid flexibility services using model predictive
control,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1893–1903, 2021.

[2] A. Shakoor et al., “Roadmap for flexibility services to 2030,” A report

to the Committee on Climate Change. London: Pöyry, 2017.
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