15,552 research outputs found

    Peak Transform for Efficient Image Representation and Coding

    Get PDF
    Digital Object Identifier 10.1109/TIP.2007.896599In this work, we introduce a nonlinear geometric transform, called peak transform (PT), for efficient image representation and coding. The proposed PT is able to convert high-frequency signals into low-frequency ones, making them much easier to be compressed. Coupled with wavelet transform and subband decomposition, the PT is able to significantly reduce signal energy in high-frequency subbands and achieve a significant transform coding gain. This has important applications in efficient data representation and compression. To maximize the transform coding gain, we develop a dynamic programming solution for optimum PT design. Based on PT, we design an image encoder, called the PT encoder, for efficient image compression. Our extensive experimental results demonstrate that, in wavelet-based subband decomposition, the signal energy in high-frequency subbands can be reduced by up to 60% if a PT is applied. The PT image encoder outperforms state-of-the-art JPEG2000 and H.264 (INTRA) encoders by up to 2-3 dB in peak signal-to-noise ratio (PSNR), especially for images with a significant amount of high-frequency components. Our experimental results also show that the proposed PT is able to efficiently capture and preserve high-frequency image features (e.g., edges) and yields significantly improved visual quality

    ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing

    Full text link
    With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general β„“1\ell_1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (\eg nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed {ISTA-Net}+^+, is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and network-based CS methods by large margins, while maintaining fast computational speed. Our source codes are available: \textsl{http://jianzhang.tech/projects/ISTA-Net}.Comment: 10 pages, 6 figures, 4 Tables. To appear in CVPR 201

    Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation

    Full text link
    To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform - Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment.Comment: 22 pages, 9 figure
    • …
    corecore