286,809 research outputs found

    Strain specific effects of low level lead exposure on associative learning and memory in rats.

    Get PDF
    Exposure to lead (Pb) remains a significant public health concern. Lead exposure in early life impairs the normal development of numerous cognitive and neurobehavioral processes. Previous work has shown that the effects of developmental Pb exposure on gene expression patterns in the brain are modulated by various factors including the developmental timing of the exposure, level of exposure, sex, and genetic background. Using gene microarray profiling, we previously reported a significant strain-specific effect of Pb exposure on the hippocampal transcriptome, with the greatest number of differentially expressed transcripts in Long Evans (LE) rats and the fewest in Sprague Dawley (SD) rats. The present study examined the extent to which this differential effect of Pb on hippocampal gene expression might influence behavior. Animals (males and females) were tested in a trace fear conditioning paradigm to evaluate effects of Pb exposures (perinatal (PERI; gestation to postnatal day 21) or early postnatal (EPN; postnatal day 1 to day 21)) on associative learning and memory. All animals (Pb-exposed and non-Pb-exposed controls) showed normal acquisition of the conditioned stimulus (tone)-unconditioned stimulus (footshock) association. Long Evans rats showed a significant deficit in short- and long-term recall, influenced by sex and the timing of Pb exposure (PERI or EPN). In contrast, Pb exposure had no significant effect on memory consolidation or recall in any SD rats. These results further demonstrate the important influence of genetic background to the functional outcomes from developmental Pb exposure

    Latent consequences of early-life lead (Pb) exposure and the future: Addressing the Pb crisis

    Get PDF
    Background. The lead (Pb) exposure crisis in Flint, Michigan has passed from well-publicized event to a footnote, while its biological and social impact will linger for lifetimes. Interest in the “water crisis” has dropped to pre-event levels, which is neither appropriate nor safe. Flint’s exposure was severe, but it was not unique. Problematic Pb levels have also been found in schools and daycares in 42 states in the USA. The enormity of Pb exposure via municipal water systems requires multiple responses. Herein, we focus on addressing a possible answer to long-term sequelae of Pb exposure. We propose “4R’s” (remediation, renovation, reallocation, and research) against the Pb crisis that goes beyond a short-term fix. Remediation for affected individuals must continue to provide clean water and deal with both short and long-term effects of Pb exposure. Renovation of current water delivery systems, at both system-wide and individual site levels, is necessary. Reallocation of resources is needed to ensure these two responses occur and to get communities ready for potential sequelae of Pb exposure. Finally, properly focused research can track exposed individuals and illuminate latent (presumably epigenetic) results of Pb exposure and inform further resource reallocation. Conclusion. Motivation to act by not only the general public but also by scientific and medical leaders must be maintained beyond initial news cycle spikes and an annual follow-up story. Environmental impact of Pb contamination of drinking water goes beyond one exposure incident in an impoverished and forgotten Michigan city. Population effects must be addressed long-term and nationwide

    Determinants of Hair Manganese, Lead, Cadmium and Arsenic Levels in Environmentally Exposed Children.

    Get PDF
    Biomarkers of environmental metal exposure in children are important for elucidating exposure and health risk. While exposure biomarkers for As, Cd, and Pb are relatively well defined, there are not yet well-validated biomarkers of Mn exposure. Here, we measured hair Mn, Pb, Cd, and As levels in children from the Mid-Ohio Valley to determine within and between-subject predictors of hair metal levels. Occipital scalp hair was collected in 2009-2010 from 222 children aged 6-12 years (169 female, 53 male) participating in a study of chemical exposure and neurodevelopment in an industrial region of the Mid-Ohio Valley. Hair samples from females were divided into three two centimeter segments, while males provided a single segment. Hair was cleaned and processed in a trace metal clean laboratory, and analyzed for As, Cd, Mn, and Pb by magnetic sector inductively coupled plasma mass spectrometry. Hair Mn and Pb levels were comparable (median 0.11 and 0.15 µg/g, respectively) and were ~10-fold higher than hair Cd and As levels (0.007 and 0.018 µg/g, respectively). Hair metal levels were higher in males compared to females, and varied by ~100-1000-fold between all subjects, and substantially less (<40-70%) between segments within female subjects. Hair Mn, Pb, and Cd, but not As levels systematically increased by ~40-70% from the proximal to distal hair segments of females. There was a significant effect of season of hair sample collection on hair Mn, Pb, and Cd, but not As levels. Finally, hair metal levels reported here are ~2 to >10-fold lower than levels reported in other studies in children, most likely because of more rigorous hair cleaning methodology used in the present study, leading to lower levels of unresolved exogenous metal contamination of hair

    Lead (Pb) concentrations in predatory bird livers 2010 and 2011: a Predatory Bird Monitoring Scheme (PBMS) report

    Get PDF
    The Predatory Bird Monitoring Scheme (PBMS; http://pbms.ceh.ac.uk/) is the umbrella project that encompasses the Centre for Ecology & Hydrology’s National Capability contaminant monitoring and surveillance work on avian predators. By monitoring sentinel vertebrate species, the PBMS aims to detect and quantify current and emerging chemical threats to the environment and in particular to vertebrate wildlife. Lead (Pb) is a highly toxic metal that acts as a non-specific poison affecting all body systems and has no known biological requirement. Sources of Pb in the environment include lead mining, the refining and smelting of lead and other metals, the manufacture and use of alkyl lead fuel additives, and the use of lead ammunition. The present study is the first two years of a PBMS monitoring programme to quantify the scale of exposure to [and associated risk from] Pb in predatory birds. The aim is to quantify the extent of exposure to lead [as assessed from liver residues] in two predatory bird species, the red kite (Mivus milvus) and the sparrowhawk (Accipiter nisus). The red kite is a scavenger and, as such, is particularly at risk from consumption of Pb ammunition in unretrieved game. Sparrowhawks prey predominantly upon live passerine birds that are unlikely to be shot in the UK; likely sources of exposure are diffuse Pb contamination although some individuals may also be exposed to Pb particles ingested by their prey. We also examined the liver Pb isotope ratios in to explore whether they can be used to ascribe likely sources of any Pb detected in the birds. Red kites had significantly higher Pb concentration than those measured in sparrowhawks but the majority of sparrowhawks and all the red kites had liver Pb concentrations below those thought to cause clinical and sub-clinical adverse effects in Falconiforme species. There was overlap in the liver Pb isotope ratios of red kites and sparrowhawks yet there was evidence of separation between the two species. There was also evidence of overlap with the isotope signature for coal and for Pb shot but the isotope signatures in the bird livers were distinct from that of petrol Pb. The Pb isotope pattern observed in the red kites and sparrowhawks in the current study may reflect the fact that liver Pb concentrations were low in the small sample of birds that were analysed and may have been a result of exposure to low-level, diffuse contamination.birds. Red kites had significantly higher Pb concentration than those measured in sparrowhawks but the majority of sparrowhawks and all the red kites had liver Pb concentrations below those thought to cause clinical and sub-clinical adverse effects in Falconiforme species. There was overlap in the liver Pb isotope ratios of red kites and sparrowhawks yet there was evidence of separation between the two species. There was also evidence of overlap with the isotope signature for coal and for Pb shot but the isotope signatures in the bird livers were distinct from that of petrol Pb. The Pb isotope pattern observed in the red kites and sparrowhawks in the current study may reflect the fact that liver Pb concentrations were low in the small sample of birds that were analysed and may have been a result of exposure to low-level, diffuse contamination

    Time and dose-dependent effects of phenobarbital on the rat liver miRNAome.

    Get PDF
    In a previous study we had shown that treatment of male Fischer rats with exogenous chemicals for three months resulted in prominent, mode-of-action dependent effects on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose of exposure to phenobarbital (PB), a drug with multiple established hepatic effects. Importantly, although acute PB treatment (1-7 days) had significant effects on liver mRNA and the expected effects on the liver phenotype (transient hyperplasia, hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were observed. However, at 14 days of PB treatment clear dose-dependent effects on miRNA were observed. The main effect of PB treatment from days 1 to 90 on liver miRNA was found to be the persistent, progressive, and highly correlated induction of the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their reported functions in the literature we found associations between perturbations of miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 proteins respectively. Our data suggest that miRNA are unlikely to play an important role in the acute responses of the adult rodent liver to PB treatment. However, the miRNA responses to longer PB exposures suggest a potential role for maintaining liver homeostasis in response to sub-chronic and chronic xenobiotic-induced perturbations. Similar studies for more chemicals are needed to clarify whether the temporal and dose pattern of miRNA-toxicant interaction identified here for PB are widely applicable to other xenobiotics. © 2013 Elsevier Ireland Ltd

    Foliar lead uptake by lettuce exposed to atmospheric fallouts

    Get PDF
    Metal uptake by plants occurs by soil−root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce (Lactuca sativa) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 ± 50 mg Pb kg−1 (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination

    Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO

    Get PDF
    The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP interactions on 19^{19}F using the superheated droplet technique. A new generation of detectors and new features which enable background discrimination via the rejection of non-particle induced events are described. First results are presented for a subset of two detectors with target masses of 19^{19}F of 65 g and 69 g respectively and a total exposure of 13.75 ±\pm 0.48 kgd. No dark matter signal was found and for WIMP masses around 24 GeV/c2^2 new limits have been obtained on the spin-dependent cross section on 19^{19}F of σF\sigma_F = 13.9 pb (90% C.L.) which can be converted into cross section limits on protons and neutrons of σp\sigma_p = 0.16 pb and σn\sigma_n = 2.60 pb respectively (90% C.L). The obtained limits on protons restrict recent interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages, 7 figure

    Pengukuran Laju Paparan Radiasi Sinar-X pada Ruang Operator RSUD. Prof. DR. W. Z. Johannes Kupang

    Full text link
    The measurement of X-ray radiation exposure rate in operator\u27s room with Pb glass at the Prof. Dr. W. Z. Johannes hospital, Kupang has been done. The measurement of radiation exposure rate for radiation before and after passing through the Pb glass was done using surveymeter. There are six points of measurement: at the upper-left, upper-right, upper-midle, bottom-left, bottom-right, and bottom-midle sides. The results of measurements show that Pb glass reduce the radiation exposure rate until 99,51%, and when flouroscopy is activated, the radiation exposure rate at the operator\u27s room is 0,6 mR/hour. This value is below the value of dose limit (NBD)

    Characterization of lead-recycling facility emissions at various workplaces: Major insights for sanitary risks assessment

    Get PDF
    Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multiscale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions. These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40mgL−1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (<0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered

    Tracing fetal and childhood exposure to lead using isotope analysis of deciduous teeth

    Get PDF
    We report progress in using the isotopic composition and concentration of Pb in the dentine and enamel of deciduous teeth to provide a high resolution time frame of exposure to Pb during fetal development and early childhood. Isotope measurements (total Pb and 208Pb/206Pb, 207Pb/206Pb ratios) were acquired by laser ablation inductively coupled mass spectrometry at contiguous 100 micron intervals across thin sections of the teeth; from the outer enamel surface to the pulp cavity. Teeth samples (n=10) were selected from two cohorts of children, aged 5–8 years, living in NE England. By integrating the isotope data with histological analysis of the teeth, using the daily incremental lines in dentine, we were able to assign true estimated ages to each ablation point (first 2–3 years for molars, first 1–2 years for incisors+pre-natal growth). Significant differences were observed in the isotope composition and concentration of Pb between children, reflecting differences in the timing and sources of exposure during early childhood. Those born in 2000, after the withdrawal of leaded petrol in 1999, have the lowest dentine Pb levels (0.4 µgPb/g) with 208Pb/206Pb (mean ±2σ: 2.145–2.117) 208Pb/206Pb (mean ±2σ: 0.898–0.882) ratios that can be modelled as a binary mix between industrial aerosols and leaded petrol emissions. Short duration, high intensity exposure events (1–2 months) were readily identified, together with evidence that dentine provides a good proxy for childhood changes in the isotope composition of blood Pb. Our pilot study confirms that laser ablation Pb isotope analysis of deciduous teeth, when carried out in conjunction with histological analysis, permits a reconstruction of the timing, duration and source of exposure to Pb during early childhood. With further development, this approach has the potential to study larger cohorts and appraise environments where the levels of exposure to Pb are much higher
    corecore