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Abstract 

In a previous study we had shown that treatment of male Fischer rats with exogenous 

chemicals for three months resulted in prominent, mode-of-action dependent effects 

on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the 

effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose 

of exposure to Phenobarbital (PB), a drug with multiple established hepatic effects. 

Importantly, although acute PB treatment (1-7 days) had significant effects on liver 

mRNA and the expected effects on the liver phenotype (transient hyperplasia, 

hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were 

observed. However, at 14 days of PB treatment clear dose-dependent effects on 

miRNA were observed.  The main effect of PB treatment from days 1-90 on liver 

miRNA was found to be the persistent, progressive, and highly correlated induction of 

the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of 

the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their 

reported functions in the literature we found associations between perturbations of 

miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 

proteins respectively. Our data suggest that miRNA are unlikely to play an important 

role in the acute responses of the adult rodent liver to PB treatment. However, the 

miRNA responses to longer PB exposures suggest a potential role for maintaining 

liver homeostasis in response to sub-chronic and chronic xenobiotic-induced 

perturbations. Similar studies for more chemicals are needed to clarify whether the 

temporal and dose pattern of miRNA-toxicant interaction identified here for PB are 

widely applicable to other xenobiotics. 
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1.Introduction 

Rodents are routinely used to evaluate the safety of pharmaceutical, industrial, and 

environmental agents. A substantial fraction of the tested chemicals target the liver 

due to the metabolic and detoxifying functions of this organ. Such biologically 

effective agents elicit hepatic responses, which maintain homeostasis (adaptive) or 

those that disrupt homeostasis (adverse) (Williams and Iatropoulos 2002).  Hepatic 

responses to xenobiotic exposure include the induction of biotransformation enzymes, 

activation of anti-oxidative stress response, liver enlargement, increased hepatic 

necrosis, and altered apoptosis or proliferation (Williams and Iatropoulos 2002). 

However, the underlying molecular mechanisms driving hepatic responses to 

xenobiotics are often not well defined. An improved understanding of these molecular 

mechanisms would facilitate the extrapolation of exposure outcomes from rodents to 

humans and improve risk assessment. 

 

It has been suggested that miRNA, small non-coding genes which regulate protein 

levels at the post-transcriptional stage, could contribute to the cellular responses to 

toxicant exposures (Taylor and Gant, 2008). Examining miRNA profiles could 

therefore enhance mechanistic understanding of how xenobiotics elicit their diverse 

effects on their target cells and tissues. Significantly, regulation by miRNA has been 

demonstrated to be crucial for the proper functioning of the liver, a complex organ 

with multiple key functions in physiology and disease. For example liver miRNAs are 

involved in the regulation of liver regeneration after hepatectomy (Chen et al., 2011; 

Song et al., 2010), in hepatocyte differentiation and development (Gailhouste et al., 

2013), lipid and glucose metabolism (Esau at al., 2006; Trajkovski et al., 2013), and 

bile acid homeostasis (Li et al., 2013). Recently we reported for the first time an 

investigation into the effects of multiple chemicals with different modes of action on 

the liver miRNAome after three months of exposure (Koufaris et al., 2012). 

Importantly, all the tested chemicals affected the liver miRNAome, with the hepatic 

miRNA profiles being associated with their mode of action.  However, reported 

studies so far have been limited to examining effects of a single dose of xenobiotics 

on the liver miRNAome at one or few time-points, which limits the ability to interpret 

the biological significance of observed effects. Additionally, there exists little 
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rationalization regarding the dosage levels and time-points to be used in studies 

investigating the contribution of miRNA to toxicological responses.    

 

For this study we evaluated the expression of hepatic miRNAs of male Fischer rats 

dietary exposed to a control diet; a diet supplemented with a PB dose that induced 

centrilobular hypertrophy and weak CYP450 induction, but does not induce 

hepatomegaly or proliferation (50 parts per million (ppm)); or with two PB doses that 

cause strong CYP450 induction, hepatomegaly, and transient proliferation (500 and 

1000 ppm). For each group miRNA profiles were assessed at 1, 3, 7 and 14 days. The 

effects of these PB treatments on liver growth, morphology, pathology, clinical 

parameters, metabolism, and expression of liver mRNAs in these animals were 

reported previously (Waterman et al.,2010). Importantly, by the end of the 14 days 

alterations on liver growth and proliferation due to PB treatment were complete 

(Waterman et al.,2010). Our analysis indicates that initially liver miRNA are 

relatively resistant to acute PB treatment, but more prominent, dose-dependent effects 

are observed following long-term treatments. 

 

2.Materials and methods 

2.1 Animal study 

All animal procedures conformed to the Home Office (UK) guidelines for 

experimentation with animals and were approved by local ethics committee. Groups 

of six-week old male Fischer (F344) rats were obtained from Harlan Olac 

(Netherlands), randomly assigned to cages and treatment, and left to acclimatise for 

seven days prior to commencement of PB treatments. Three animals were examined 

per group. The rats were kept under controlled lighting (12h light cycles), humidity 

(30-70%), air flow (15 changes per hour), and temperature (22 ± 3
o
 C) conditions. 

Each group was exposed to different concentrations (0, 50, 500, 1000 ppm in the diet) 

of the sodium salt of phenobarbital which was added to the standard laboratory diet 

and milled to homogeneity.  Rats were given access to mains water and powdered diet 

ad libitum. At the end of the study animals were killed midway through the light cycle 

to minimise circadian effects by an overdose of anaesthetic (halothane 

Ph.Eur.Vapour) followed by exsanguination after 1, 3, 7, 14 days of phenobarbital 

exposure. Control rats (0 ppm PB diet) were killed at each time point. Liver tissue 
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(left lateral lobe) was obtained from the animals immediately upon sacrifice, weighed, 

snap frozen and stored at -80C until needed. For some analyses, samples were also 

examined from rats treated in a separate study.  In this additional study, groups of 

male Fischer (F344) rats (Harlan Olac) treated with PB (0, 50, 500 and 1000 ppm in 

the diet) for 28 and 90 days were used. 

 

2.2 RNA extraction 

Total RNA was extracted using Trizol (Invitrogen), following the manufacturer’s 

instructions. RNA was used for subsequent analysis only if it had an RNA integrity 

number, as determined using an Agilent 2100 Bioanalyser and the RNA 6000 nano kit 

(Agilent), greater than eight and a 260:280 ratio greater than 2.0, as determined with a 

ND-1000 nanodrop spectrophotometer. 

 

2.3 miRNA microarrays 

The hepatic miRNAome was profiled at the MRC Genomics laboratory at Imperial 

College London using the Agilent microRNA microarray platform as previously 

described (Koufaris et al., 2012). Livers from three animals were examined per group. 

The hybridisation data were extracted using the Agilent feature extraction software 

and normalised to the 75th percentile using Genespring GX (Agilent). For subsequent 

analysis we retained miRNAs which were flagged as present in at least two out of the 

three examined animals in any group. Box plots of normalized microarray data for 

individual samples displayed similar distributions supporting the quality of the 

hybridization data. The miRNA microarray data is available at Gene Expression 

Omnibus (GSE48489). The miRNA profiling data from male Fischer rats treated with 

1000 ppm PB for 90 days were generated previously (Koufaris et al., 2012) and is 

available at Gene Expression Omnibus (GSE48492).  

 

2.4 Analysis of mRNA microarray data  

The mRNA microarray data (GSE18753) was processed in BRB-Array tools by 

MAS5 summarization, averaging the replicate spots in each array and setting the 

threshold for each spot to 10, baseline transforming each gene to the median. Genes 

failing to appear in at least 25% of the samples were excluded for further analysis.  

Where a gene was represented by more than one probe, the average expression for the 

probes was used.  
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2.5 Hierarchical clustering analysis 

Hierarchical clustering analysis for mRNAs and miRNAs was performed in Cluster 

3.0 using genes that had passed our filtering criteria. The probes were median 

centered and normalized and the tree was constructed using correlation centered as the 

similarity metric and average linkage.  

 

2.6 Polymerase chain reaction (PCR)  

For quantitative reverse-transcription real time PCR (qRT-PCR), total RNA was 

reverse transcribed using the miRNA reverse transcription kit (Agilent) and then 

amplified using the Taqman 2X Universal PCR master mix, No AmpErase UNG 

(Applied Biosystems), with each PCR reaction performed in triplicate. Mature 

miRNA Taqman assays were purchased from Applied Biosystems. The qRT-PCR 

data were analysed in the ABI 7500 Sequence Detection System (Applied 

Biosystems) using the comparative Ct Method (ΔΔCT Method) to quantify miRNA 

expression using snoRNA as the endogenous control. For semi-quantitative RT-PCR 

total RNA was reverse transcribed using MMLV reverse transcriptase (Promega). The 

cDNA was then amplified using Tfi polymerase (Invitrogen). The primers used were: 

e-cadherin For ACAGCAAGCATGCCAGTGAA; e-cadherin Rev 

GCACCAACACACCCAGCATA; cyp2b1 For GGA GAG CGC TTT GAC TAC; 

cyp2b1 Rev CTC GTG GAT AAC TGC ATC;  gapdh For CAT GGA CTG TGG 

TCA TGAG; gapdh Rev TTC AAC GGC ACA GTC AAGG 

 

2.7 Immunoblotting 

Livers were homogenised with a polytron machine (Labortechnik) in 500 μl of lysis 

buffer (50 mM Tris–HCl, pH 7.4; 1% IGEPAL (Sigma-Aldrich); 0.25% sodium 

deoxycholate (Sigma-Aldrich); 150 mM NaCl (Sigma-Aldrich); 1 mM EDTA 

(SIGMA-Aldrich); 100 X Halt Protease inhibitor (Pierce)).  Homogenisation was 

followed by sonication and incubation at 4 °C for 30 min. The solutions were then 

centrifuged for 20 minutes to remove insoluble debris.  The protein extracts were 

quantified using the BCA (bicinchoninic acid) protein assay (Pierce).  Primary 

antibodies were purchased from Santa Cruz (Heidelberg) (zeb1 1:100, zeb2 1:100) or 

Sigma-Aldrich (Beta-actin; 1:10000). 
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2.8 Global DNA methylation analysis 

DNA was extracted from liver samples using the DNeasy Blood & Tissue kit 

(Qiagen) following the manufacturer’s protocol, and using the reagents and buffers 

included in the kit. Extracted DNA was quantified using the Nanodrop ND-1000 and 

used for subsequent experiments if its 260:280 ratio was higher than 1.8. The levels of 

global DNA methylation for extracted DNA were determined using the Methylamp 

Global DNA Methylation Quantification Ultra Kit (Epigentek) following the 

manufacturer’s instructions. This kit is based on the recognition of the methylated 

fraction of DNA by a labelled 5-methylcytosine which is subsequently quantified 

through an ELISA-like reaction. 

 

2.9 Statistical analysis 

Differentially expressed mRNAs and miRNAs were identified by one-way fixed-

model ANOVA with False Discovery Rate (FDR),  the expected percentage of false 

positives within a given set of predicted differentially regulated genes, set to  <0.1 in 

BRB-Array tools. The identified genes were then examined to determine whether they 

are over-represented for gene sets defined to be members of common biological 

pathways in the KEGG database using the ConsensuspathDB tool (Kamburov et al., 

2009). Similarly, enriched KEGG pathways for predicted and known targets of 

miRNAs were identified using miRSystem (Lu et al., 2012) and setting the threshold 

for a true target as being predicted by at least three software packages or being a 

verified target, an observed/expressed ratio above or equal to 2, and using pathways 

containing 25-500 genes. The student’s T-test or Analysis of variance (ANOVA) was 

used to test for significance of all other analysis. 

 

3.Results 

3.1 Hierarchical clustering analysis of liver mRNA and miRNA profiles 

As a first step towards evaluating the temporal effects of PB treatment we performed 

hierarchical clustering analysis on the liver miRNA and mRNA profiles, normalized 

to their respective time-point controls (Fig.1A-B; heatmap for miRNA clustering can 

be seen at Suppl.Fig.1). This analysis revealed a highly similar pattern of PB-induced 

perturbations on the liver miRNA and mRNA profiles, with a clear demarcation 

between acute (days 1-3) and sub-chronic (days 7-14 treatment). Importantly, the top 
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pathway enriched for mRNA differentially expressed between livers exposed to acute 

(1-3 days) and sub-chronic (7-14 days) PB treatments were the cell cycle and DNA 

replication (p<0.01) (Fig.1C). Consequently, the dichotomy in mRNA and miRNA 

profiles between 1-3 days and 7-14 days of PB exposure relate to the liver switching 

from a proliferative to a non-proliferative state. 

 

Moreover, hierarchical clustering analysis on individual days revealed a clear 

separation of the effect of PB doses on the liver miRNAome on the 14
th

 day of 

treatment (Fig.1D), but was essentially random on the previous time-points 

(Suppl.Fig.2), indicating that the distinct effects of PB treatments on the liver 

miRNAome become more prominent with longer exposures. In contrast, clustering 

analysis based on hepatic mRNA profiles could discriminate the different PB doses 

already from day 3 of PB treatment (Fig.1E). Therefore hierarchical clustering 

analysis supports a time-and-dose dependent pattern of effects on the liver 

miRNAome following PB treatment. Similarly, dosing with the drug induced time 

and dose-dependent effects on liver mRNAs, although prominent dose effects 

appeared to occur earlier for liver mRNAs compared to miRNAs. 

 

3.2 Temporal analysis of mRNA expression compared to miRNA expression 

We next aimed to identify significantly differentially expressed miRNA at each of the 

four time-points of the study. Our expectations were that we would detect both 

transient and persistent effects of PB on liver miRNA through the 14 days of the 

study. Surprisingly, using one-way ANOVA with FDR set at <10% no miRNAs were 

significant at days 1, 3, and 7, while there were 11 significant miRNAs at day 14. This 

was in contrast to the effects of the drug on liver mRNAs, were with the same 

analysis significantly deregulated genes could be identified from day 1 onwards (day 

1 34 probes; day 3 156 probes; day 7 45 probes; day 14 195 probes). The relative 

expression of the significantly differentially expressed miRNAs at day 14 in the livers 

of animals treated with each PB dose can be seen in Table 1.  

 

In a previous study we had generated miRNA data from animals treated with 1000 

ppm PB for a period of 90 days (Koufaris et al., 2012). We therefore examined that 

dataset to determine whether the miRNA that we identified to be significantly 

differentially expressed at 14 days were also affected at that later time-point. In fact, 
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the majority of miRNAs identified as significantly deregulated at 14 days displayed 

normal expression at 90 days of PB treatment (Table 2), indicating that their 

deregulation is a transient event. Intriguingly, for miR-200a, miR-200b, and miR-96 

we identified a progressive increase in expression from day 7 to day 90 of PB 

treatment (Table 2). Additionally, these miRNAs display a dose-dependent response 

to PB-treatment (Fig.2A) and a highly correlated induction in response to PB 

treatment from day 7 to three months of PB treatment (Fig.2B). Evaluation of hepatic 

miR-200b levels by qRT-PCR following PB treatment displayed highly similar levels 

to those determined by the miRNA microarray data, thus confirming the validity of 

the observed effects of PB treatment (Fig.2C). The miRNAs miR-200a, miR-200b, 

and miR-429 are arranged in a chromosomal cluster with the mature miRNAs being 

processed from a single pri-miRNA regulated by a common promoter (Bracken et 

al.,2008). Consequently the expressions of miRNA members of this chromosomal 

clusters miRNAs are highly correlated to each other. A similar arrangement into a 

common transcriptional unit also exists for miR-96 and miR-182 (Xu et al.,2007).  In 

this microarray dataset we did not detect miR-182 or miR-429, due to their lower 

expression and technical variability, although they are expected to be highly 

correlated with their co-clustered miRNAs.  To prove the point we demonstrated by 

qRT-PCR the same dose-and-time dependent effects of PB treatment on miR-182 

(Fig.2D). It should be noted that the analysis of miR-182 in the samples at the 28 and 

90 day time points were conducted on livers obtained from a different animal study to 

those used for the 1-14 day time points (Fig 2D). Nevertheless the trend for an 

increase in the expression of miR-182 with increasing time of exposure to PB and the 

dose-dependency of the effect is maintained. The highly correlated induction of the 

miR-200a/200b/429 and miR-96/182 miRNA clusters suggests that these miRNAs 

may have synergistic activities in regulating key signalling pathways and, 

subsequently, hepatic phenotypes. To investigate this possibility we used miRSystem, 

a tool that combines prediction from seven different target-prediction algorithms and 

two validated target databases to identify enriched functions and pathways for 

individual or group of miRNAs (Lu et al., 2012). Intriguingly, this analysis for the 

five PB-induced members of the two miRNA clusters identifies the mapk and the erbb 

signalling pathways, known drivers of cell proliferation, among the top KEGG 

pathways jointly regulated by these selected miRNAs (Suppl. Table 1).  
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3.3 Effect of PB on miRNA associated with hepatic proliferation 

The two highest PB doses (500 and 1000ppm) caused a transient increase in hepatic 

proliferation that peaked on the third day of treatment (39% and 61% increase in Ki67 

labelling index) (Waterman et al.,2010). However, our previous analysis did not 

identify any differentially regulated miRNA at the early time-points (days 1-3). We 

then decided to inspect the effect of the proliferation-inducing PB doses on selected 

miRNA that had been previously associated with hepatic proliferation following 

peroxisome proliferator-activated receptors (pparα) activation or liver regeneration 

after hepatectomy. However, none of these miRNA were affected in our dataset by 

the proliferation-inducing PB treatments (Suppl.Table 2), indicating that they are not 

involved in this phenotype. 

 

3.4 Association between miR-29b with global hepatic DNA methylation and miR-

200a/200b with zeb1/zeb2 transcription factors 

In the microarray dataset hepatic miR-29b was transiently repressed by PB treatment 

at 14 days of treatment (Fig 3A). Importantly, miR-29b has been reported to be 

master regulator of global DNA methylation (Fabbri et al., 2007; Garzon et al., 2009). 

Interestingly, PB treatment is known to affect DNA methylation patterns in the liver 

(Counts et al.,1996), leading us to enquire whether there existed an association 

between miR-29b and global DNA methylation. Indeed, in agreement with the 

reported activity of miR-29b to antagonise global DNA methylation the transient 

repression of this miRNA at day 14 of PB treatment was associated with a transient 

increase in global DNA methylation (Fig. 3B).  

 

Epithelial to mesenchymal transition (EMT) is a developmental program that 

facilitates the acquisition of invasive and metastatic capabilities by cells. It has been 

reported that genes involved in EMT are affected by PB treatment (Phillips et 

al.,2009). Interestingly, members of the miR-200 family that are upregulated by PB 

treatment are known to antagonize EMT by repressing the zeb1 and zeb2 transcription 

factors (Bracken et al., 2008).  It is therefore possible that the observed upregulation 

of miR-200a/200b/429 could be involved in the regulation of EMT. Indeed, we found 

a dose-dependent decrease in the levels of zeb1 and zeb2 proteins at day 14 of PB 
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treatment (Fig. 4A-B), consistent with an inverse association to the dose-dependent 

induction of the miR-200 family at that timepoint (Fig. 2A). However there was no 

associated change in the expression levels of hepatic e-cadherin, a key epithelial 

marker that is downstream of zeb1 and zeb2 (Fig. 4C-D).  

 

4. Discussion 

To the best of our knowledge this is the first study to investigate both the temporal 

and dose effects of xenobiotic treatments on the liver miRNAome. Significantly, in 

agreement with other studies examining the effects of acute dioxin, benzo(a)pyrene, 

and N-ethyl-N-nitrosourea exposures (Moffat et al., 2007; Li et al., 2010; Yauk et al., 

2010) liver miRNA were initially relatively unresponsive to chemical treatment 

compared to liver mRNA (Fig.1). This observation suggests that liver miRNA 

networks are under particularly stringent regulation, perhaps due to their important 

master-regulatory functions. However, after sub-chronic (>one week) PB-treatment, 

liver miRNA deregulation clearly becomes more prominent and dose-dependent (Fig. 

1-2; Table 1-2). Interestingly, the initiation of more prominent changes in hepatic 

miRNA coincides temporally with the achievement of equilibrium (termination of the 

proliferation and achievement of maximum hepatomegaly) in the liver of animals 

being continuously exposed to PB. This observation raises the interesting possibility 

that the predominant role of miRNA in response to xenobiotics in the adult liver may 

be to direct homeostatic adaptation to sub-chronic and chronic exposures. 

Consequently, our PB data suggest that studies interested in investigating the role of 

miRNA in liver response to xenobiotics should focus more on the effects of high 

dose/long term exposures.  However, more studies are needed to determine whether 

the time and dose dynamics of PB-miRNA interaction identified here reflect the 

majority of xenobiotic agents targeting the liver. 

 

We had previously identified the co-ordinated increased expression of the hepatic 

miR-200a/200b/429 and miR-96/182 miRNA clusters specifically in the livers of 

animals treated for 90 days with PB, di(2-ethylhexyl)phthalate, and benzophenone 

(Koufaris et al.,2012). That observation led us to hypothesize that the co-ordinated 

upregulation of these miRNA clusters could be characteristic of nuclear-receptor 

agonists. Another commonality of these chemicals is that they induce a transient 
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hepatic proliferative response. Interestingly, from this study that this miRNA response 

(i) is temporally associated with the termination of the PB-induced proliferation 

(initiated after 7-14 days) (ii) is persistant and progressive (iii) occurs only in 

response to proliferation-inducing 500 and 1000 ppm PB doses (Fig.2). The co-

ordinated upregulation of this miRNA clusters could therefore be a molecular 

signature of the liver adapting to xenobiotic-induced transient hyperplasia. However, 

it is unclear whether this miRNA response is causally involved in this hepatic 

response. We have also associated PB-induced deregulation of miR-29b and miR-

200a/200b/429 with altered global DNA methylation and repression of the zeb1/zeb2 

transcription factors (Fig.3-4). The functional importance of these miRNA 

deregulations is not clear at present. However, it is important to note that both DNA 

methylation and EMT have been associated with PB-induced carcinogenicity. Global 

hypomethylation is more pronounced in PB-treated livers of mice strains susceptible 

to PB-treated carcinogenesis (Counts et al., 1996). Similarly, EMT has been reported 

to be strongly activated in mice susceptible to PB-induced hepatocarcinogenicity 

(Phillips et al.,2009).  It should be noted that PB is an established non-genotoxic 

hepatocarcinogen in some mice strains, but not in rats (Whysner et al.,1996). Recently 

we have argued that altered miRNA regulation could be involved in differential 

species responses to equivalent toxic exposures (Koufaris and Gooderham, 2013). 

Interestingly, a recent study of the effects of a carcinogenic dose of PB on mice liver 

miRNAome over similar time-points as this study (1-90 days) did not identify the 

miR-200a/200b/429 cluster, miR-96/182 cluster or miR-29b to be among the affected 

miRNA (Lempiäinen et al.,2013). The repression of miR-29b in PB-treated rats, and 

the resultant effects on global methylation may act to protect the animal from 

excessive genomic demethylation. The induction of miR-200b in the liver of PB-

treated animals was inversely associated with the expression of zeb1/zeb2 

transcription factors. Hence, one consequence of the upregulation of miR-200a/200b 

(and the subsequent repression of zeb1/zeb2) may be to contribute to the protection of 

the epithelial nature of hepatocytes exposed to biologically effective levels of 

xenobiotics. However, it is not clear if that is the main effect of miR-200 in PB treated 

livers, as we did not observe here any associated changes in the expression of the 

epithelial gene e-cadherin, It will be an interesting avenue for future work to 

investigate whether miRNA are involved in the different susceptibilities of mice and 

rats to PB-induced carcinogenicity. 
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A better comprehension of the molecular mechanisms driving liver responses to 

exogenous agents will be highly important for predicting the toxic side-effects of 

xenobiotic exposures, for extrapolating the effects of the exposures across species, 

and for enhancing understanding of fundamental liver biology. In this study we have 

identified a complex pattern of PB-treatment related effects on the liver miRNAome. 

Given the key regulatory role of miRNAs, alterations in the expression of these genes 

could be an important molecular mechanism by which the liver initiates and sustains 

responses to the drug. More generally, we have now performed two studies, here and 

Koufaris et al., (2012), which enhance our understanding of the effects of xenobiotic 

treatments on liver miRNAs. In unison our data demonstrate that hepatic miRNA 

expression changes are affected by xenobiotics; are dependent on the dose; are 

temporally regulated; indicate the mode of action of chemicals; and have important 

phenotypic effects. These fundamentally important observations support the need for 

further investigation into the regulatory functions of hepatic miRNAs that will 

enhance our understanding of the adaptive and adverse hepatic responses to 

xenobiotic exposures.  
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Figure legends 

Figure 1 Hierarchical clustering analysis of hepatic miRNA and mRNA profiles 

(A) Hierarchical clustering analysis of animal treatment groups based on expression 

of hepatic miRNAs. For each treatment group the fold change of each miRNA from 

the day control were calculated; (B) Hierarchical clustering analysis of animal 

treatment groups based on expression of hepatic mRNAs. For each treatment group 

the fold change of each miRNA from the day control were calculated; (C) Enriched 

KEGG pathways (p<0.05) for mRNA genes differentially expressed between acute 

(days 1-3) and sub-chronic (days 7-14) treatments; (D) Clustering analysis of samples 

after 14 days of treatment using hepatic miRNA profiles; (E) Clustering analysis of 

samples after 3 days of treatment using hepatic mRNA profiles.  

Figure 2 Dose-dependent and correlated induction of hepatic miR-200b and 

miR-96 clusters following PB treatment. (A) Expression of miR-200b and miR-96 

in animals treated with different PB-doses at day 14; (B) Correlation of miR-200b and 

miR-96 in PB-treated samples from day 3 onwards, Pearson’s correlation is shown; 

(C) Correlation between miR-200b expressions in PB-treated samples, calculated by 

microarrays and qRT-PCR (qRT-PCR was not performed for every dose at every 

timepoint), Pearson’s correlation is shown;  (D) Quantitation of miR-182 by qRT-

PCR in control, 50ppm, and 1000 ppm animals after treatment for 3, 7, 14, 28 and 90 

days. N=3, error bars indicate s.e.m, Student’s t-test was performed * p<0.05. 

Figure 3 Association between miR-29b expression and hepatic global DNA 

methylation (A) Hepatic miR-29b expression in animals treated with 1000 ppm PB 

relative to untreated animals at 7, 14, and 90 days; (B) quantitation of global DNA 

methylation levels in animals treated with 1000 ppm PB relative to untreated animals 

at 7, 14, and 90 days. N=3, error bars indicate s.e.m, Student’s t-test was performed * 

p<0.05. 

Figure 4 Association between miR-200a/200b expression and zeb1/zeb2 

transcription factors (A) Immunoblot of zeb1/zeb2 in the livers of PB-treated 

animals at 14 days, each lane is a lysate from a different rat; (B) Quantification of 

zeb1 and zeb2 proteins ;(C) PCR amplifications of cyp2b1/2, e-cadherin, and gapdh 

in control and 1000 ppm PB-treated samples at 90 days, cyp2b1 was amplified and 

quantified as a positive control; (D) Quantification of PCR bands. Values are mean ± 

s.d, n=3 * p<0.05 Student’s T-test. 

 



Tables 

Table 1 Relative expression levels of miRNAs that were significantly differentially 

expressed at 14 days of PB treatment  

MiRNA 50 ppm PB 500 ppm PB 1000 ppm PB 

miR-200b 1.3±0.3 1.7±0.3 2.7±0.2 

miR-200a 1.2±0.1 1.2±0.4 1.6±0.2 

miR-96 0.8±0.1 1.3±0.3 2.1±0.1 

miR-494 0.7±0.2 1.1±0.3 1.7±0.1 

miR-324-3p 0.7±0.1 1.1±0.3 1.5±0.2 

miR-93 0.9±0.3 1.2±0.1 1.4±0.1 

miR-29b 0.7±0.2 0.8±0.1 0.7±0.04  

miR-99a 0.8±0.2 0.9±0.1 0.8±0.04 

miR-19b 0.7±0.3 0.7±0.1 0.7±0.1 

miR-195 0.8±0.1 0.9±0.0 0.9±0.0 

miR-199a-5p 0.9±0.4 0.7±0.1 0.7±0.1 

Expressions relative to control group and s.d. are shown. 

 

Table 2 Temporal trends of mean fold change in expression of miRNAs significantly 

altered between control and 1000ppm at 14 days of PB treatment 

MiRNA Day 3 Day 7 Day 14 Day 90 

miR-200b 0.8±0.2 2.0±0.9 2.7±0.2* 4.2±0.4* 

miR-200a 0.8±0.2 1.9±0.5 1.6±0.2* 3.8±0.5* 

miR-96 1.1±0.2 1.8±0.5 2.1±0.1* 3.6±0.1* 

miR-494 0.7±0.1 0.6±0.3 1.7±0.1* 0.6±0.2 

miR-324-3p 1.0±.6 0.7±0.6 1.5±0.2* 0.8±0.4 

miR-93 0.9±0.1 1.0±0.2 1.4±0.1* 1.1±0.1 

miR-29b 1.5±0.4 1.3±0.4 0.7±0.04 * 1.1±0.2 

miR-99a 1.1±0.1 0.9±0.2 0.8±0.04* 0.8±0.02* 

miR-19b 1.4±0.5 1.2±0.3 0.7±0.1* 0.8±0.2 

miR-195 1.0±0.0 1.0±0.3 0.9±0.0* 0.8±0.1 

miR-199a-5p 0.8±0.1 1.1±0.4 0.7±0.1* 1.0±0.0 

*
 Significant at FDR<0.1  
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