30 research outputs found

    Payload capabilities and operational limits of eversion robots

    Get PDF
    Recent progress in soft robotics has seen new types of actuation mechanisms based on apical extension which allows robots to grow to unprecedented lengths. Eversion robots are a type of robots based on the principle of apical extension offering excellent maneuverability and ease of control allowing users to conduct tasks from a distance. Mechanical modelling of these robotic structures is very important for understanding their operational capabilities. In this paper, we model the eversion robot as a thin-walled cylindrical beam inflated with air pressure, using Timoshenko beam theory considering rotational and shear effects. We examine the various failure modes of the eversion robots such as yielding, buckling instability and lateral collapse, and study the payloads and operational limits of these robots in axial and lateral loading conditions. Surface maps showing the operational boundaries for different combinations of the geometrical parameters are presented. This work provides insights into the design of eversion robots and can pave the way towards eversion robots with high payload capabilities that can act from long distances

    Soft Inflatable Fingers: An Overview of Design, Prototyping and Sensorisation for Various Applications

    Get PDF
    Fabric-based soft actuators, grippers and manipulators are gaining in popularity due to their ability to handle large payloads while being lightweight, extremely compliant, low-cost and fully collapsible. Achieving full-pose sensing of fabric fingers without compromising on these advantageous properties, however, remains a challenge. This paper overviews work on soft fabric-based inflatable finger design, actuation and sensorisation carried out at the Centre for Advanced Robotics at Queen Mary (ARQ), University of London. Further experimental analysis has been performed to examine features such as bending control and eversion (growing from the tip) in fabric fingers for grasping applications. In addition, two types of grasp force have been measured for a bi-fingered gripper: envelope grasping and pinch grasping. Beyond force measurement, this paper advances a new concept for the sensorisation of fabric grippers using soft optical waveguide sensors and proposes shape estimation using image processing

    Highly Manoeuvrable Eversion Robot Based on Fusion of Function with Structure

    Get PDF
    Despite their soft and compliant bodies, most of today’s soft robots have limitations when it comes to elongation or extension of their main structure. In contrast to this, a new type of soft robot called the eversion robot can grow longitudinally, exploiting the principle of eversion. Eversion robots can squeeze through narrow openings, giving the possibility to access places that are inaccessible by conventional robots. The main drawback of these types of robots is their limited bending capability due to the tendency to move along a straight line. In this paper, we propose a novel way to fuse bending actuation with the robot’s structure. We devise an eversion robot whose body forms both the central chamber that acts as the backbone as well as the actuators that cause bending and manoeuvre the manipulator. The proposed technique shows a significantly improved bending capability compared to externally attaching actuators to an eversion robot showing a 133% improvement in bending angle. Due to the increased manoeuvrability, the proposed solution is a step towards the employment of eversion robots in remote and difficult-to-access environments

    Fabric-based eversion type soft actuators for robotic grasping applications

    Get PDF
    Humans have managed to simplify their lives by using robots to automate dull and repetitive tasks. Traditional robots have been very helpful in this respect, but in certain applications, the complexity of manufacturing and the requisite control strategies have rendered these systems inadequate. The concept of robots made of soft materials has increasingly been explored and a new avenue of research has opened up within the robotics community. In terms of construction, robots made of soft and flexible materials have several advantages over their rigid-bodied counterparts, among them simple design, simple control mechanisms, inexpensive constituent materials and the fact that they can be easily integrated into existing systems. Soft grippers in particular have been the subject of extensive research and we have witnessed significant development in terms of attributes like grasping, payload and sensing methodologies. Progress has been enhanced by the development of new materials used in the construction of actuators or end effectors of the grippers. The use of lightweight, non-stretch fabrics is a relatively new concept but initial studies have demonstrated their effectiveness in grasping applications. This thesis sets out a comparative study of popular gripping systems, focusing on the advantages of using fabrics in the construction of soft grippers. Multiple designs for fabric based finger like actuators, each addressing the drawbacks of the preceding design, are discussed along with the experimental evaluation of each design. A novel gripping mechanism in which the fingers of the gripper grow lengthwise from the tip (evert) to access and grasp the object is also presented. Large-scale fabric based eversion robots have been constructed to access environments with restricted access and for monitoring purposes. An experimental evaluation of the eversion capable finger is also presented, outlining important attributes such as payload, bending and force capability of the designed finger. An optical fibre based sensing methodology is also presented, capable of measuring the bending behaviour in soft actuators. The proposed sensor can be configured to sense bending angles, as well as the contact forces along different points along the length of the actuators

    Model-based Pose Control of Inflatable Eversion Robot with Variable Stiffness

    Get PDF

    Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots

    Get PDF
    While serial robots are known for their versatility in applications, larger workspace, simpler modeling and control, they have certain disadvantages like limited precision, lower stiffness and poor dynamic characteristics in general. A parallel robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside of a reduced workspace and a more complex geometry that needs careful analysis and control. To bring the best of the two worlds, parallel submechanism modules can be connected in series to achieve a series-parallel hybrid robot with better dynamic characteristics and larger workspace. Such a design philosophy is being used in several robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 humanoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc.These robots inherit the complexity of both serial and parallel architectures. Hence, solving their kinematics and dynamics is challenging because they are subjected to additional geometric loop closure constraints. Most approaches in multi-body dynamics adopt numerical resolution of these constraints for the sake of generality but may suffer from inaccuracy and performance issues. They also do not exploit the modularity in robot design. Further, closed loop systems can have variable mobility, different assembly modes and can impose redundant constraints on the equations of motion which deteriorates the quality of many multi-body dynamics solvers. Very often only a local view to the system behavior is possible. Hence, it is interesting for geometers or kinematics researchers, to study the analytical solutions to geometric problems associated with a specific type of parallel mechanism and their importance over numerical solutions is irrefutable. Techniques such as screw theory, computational algebraic geometry, elimination and continuation methods are popular in this domain. But this domain specific knowledge is often underrepresented in the design of model based kinematics and dynamics software frameworks. The contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kinematic analysis is performed for the novel parallel mechanisms invented recently at DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from computational algebraic geometry and screw theory. Secondly, the general idea of a modular software framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic systems with the help of a software database which stores the analytical solutions for parallel submechanism modules in a configurable and unit testable manner. HyRoDyn approach is suitable for both high fidelity simulations and real-time control of complex series-parallel hybrid robots. The results from this thesis has been applied to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The aim of this software tool is to assist both designers and control engineers in developing complex robotic systems of the future. Efficient kinematic and dynamic modeling can lead to more compliant behavior, better whole body control, walking and manipulating capabilities etc. which are highly desired in the present day and future robotic applications
    corecore