4 research outputs found

    Wireless sensed environment for body area networks

    Get PDF
    In low power wireless body area networks it is envisaged that there will be communication between on-body devices and wireless nodes placed in the environment (sensed environment) to provide a range of applications including health monitoring. However, there remain major challenges to realise this scenario such as decisions on the optimal node location, node orientation, transmit power level, and the number of nodes to cover the area of interest (sensed environment) which if not correct can lead to poor coverage or over-provisioned, oversized networks. In this paper we experiment with a BAN device and nodes deployed in a variety of locations throughout an office environment to represent a sensed environment. Packet loss rates (PLR) were analysed to explore trade-offs between node densities and transmit power levels. We determine that the deployment location, the density, and BAN transmission power level are important factors to be considered in the scenario where a mobile BAN communicates with a sensed environment. We found that deploying the environment nodes at chest height on the surrounding wall yielded the best results in terms of coverage and node density providing an optimal link between the BAN and the sensed environment

    Impulsive Interference Avoidance in Dense Wireless Sensor Networks

    Get PDF
    Abstract. Wireless sensor networks (WSNs) are subject to interference from other users of the radio-frequency (RF) medium. If the WSN nodes can recognize the interference pattern, they can benefit from steering their transmissions around it. This possibility has stirred some interest among researchers involved in cognitive radios, where special hardware has been postulated to circumvent non-random interference. Our goal is to explore ways of enhancing medium access control (MAC) schemes operating within the framework of traditional off-the-shelf RF modules applicable in low-cost WSN motes, such that they can detect interference patterns in the neighbourhood and creatively respond to them, mitigating their negative impact on the packet reception rate. In this paper, and based on previous work on the post-deployment characterization of a channel aimed at identifying "spiky" interference patterns, we describe (a) a way to incorporate interference models into an existing WSN emulator and (b) the subsequent evaluation of a proof-of-concept MAC technique for circumventing the interference. We found that an interference-aware MAC can improve the packet delivery rates in these environments at the cost of increased, but acceptable, latency

    Impulsive Interference Avoidance in Dense Wireless Sensor Networks

    Get PDF
    ABSTRACT As with all wireless communication devices, wireless sensor networks (WSNs) are subject to interference from other users of the radio-frequency (RF) medium. Such interference is practically never random: originating in applications generally performing some practical and sensible activities, it naturally exhibits various regularities amounting to perceptible patterns, e.g., regularly-spaced short-duration impulses that correlate among multiple WSN nodes. If those nodes can recognize the interference pattern, they can benefit from steering their transmissions around it. This possibility has stirred some interest among researchers involved in cognitive radios, where special hardware has been postulated to circumvent non-random interference. Our goal is to explore ways of enhancing medium access control (MAC) schemes operating within the framework of traditional off-the-shelf RF modules applicable in low-cost WSN motes, such that they can detect interference patterns in the neighbourhood and creatively respond to them mitigating their negative impact on the packet reception rate. In this paper, we describe (a) a method for the post-deployment dynamic characterization of a channel aimed at identifying spiky interference patterns, (b) a way to incorporate interference models into an existing WSN emulator, and (c) the subsequent evaluation of a proof-of-concept MAC technique for circumventing the interference. We found that an interference-aware MAC can improve the packet delivery rates in these environments at the cost of increased latency. Notably, the latter is quite acceptable in the vast majority of WSN applications

    The energy problem in resource constrained wireless networks

    Get PDF
    Today Wireless Sensor Networks are part of a wider scenario involving several wireless and wired communication technology: the Internet Of Things (IoT). The IoT envisions billions of tiny embedded devices, called Smart Objects, connected in a Internet-like structure. Even if the integration of WSNs into the IoT scenario is nowadays a reality, the main bottleneck of this technology is the energy consumption of sensor nodes, which quickly deplete the limited amount of energy of available in batteries. This drawback, referred to as the energy problem, was addressed in a number of research papers proposing various energy optimization approaches to extend sensor nodes lifetime. However, energy problem is still an open issue that prevents the full exploitation of WSN technology. This thesis investigates the energy problem in WSNs and introduces original solutions trying to mitigate drawbacks related to this phenomenon. Starting from solutions proposed by the research community in WSNs, we deeply investigate critical and challenging factors concerning the energy problem and we came out with cutting-edge low-power hardware platforms, original software energy-aware protocols and novel energy-neutral hardware/software solutions overcoming the state-of-art. Concerning low-power hardware, we introduce the MagoNode, a new WSN mote equipped with a radio frequency (RF) front-end which enhances radio performance. We show that in real applicative contexts, the advantages introduced by the RF front-end keep packet re-trasmissions and forwards low. Furthermore, we present the ultra low-power Wake-Up Radio (WUR) system we designed and the experimental activity to validate its performance. In particular, our Wake-up Radio Receiver (WRx) features a sensitivity of -50 dBm, has a current consumption of 579nA in idle-listening and features a maximum radio range of about 19 meters. What clearly resulted from the experimental activity is that performance of the WRx is strongly affected by noise. To mitigate the impact of noise on WUR communication we implemented a Forward Error Correction (FEC) mechanism based on Hamming code. We performed several test to determine the effectiveness of the proposed solution. The outcome show that our WUR system can be employed in environment where the Bit Error Rate (BER) induced by noise is up to 10^2, vice versa, when the BER induced by noise is in the order of 10´3 or below, it is not worth to use any Forward Error Correction (FEC) mechanism since it does not introduce any advantages compared to uncoded data. In the context of energy-aware solutions, we present two protocols: REACTIVE and ALBA-WUR. REACTIVE is a low-power over-the-air programming (OAP) protocol we implemented to improve the energy efficiency and lower the image dissemination time of Deluge T2, a well-known OAP protocol implemented in TinyOS. To prove the effectiveness of REACTIVE we compared it to Deluge exploiting a testbed made of MagoNode motes. Results of our experiments show that the image dissemination time is 7 times smaller than Deluge, while the energy consumption drops 2.6 times. ALBA-WUR redesigns ALBA-R protocol, extending it to exploit advantages of WUR technology. We compared ALBA-R and ALBA-WUR in terms of current consumption and latency via simulations. Results show that ALBA-WUR estimated network lifetime is decades longer than that achievable by ALBA-R. Furthermore, end-to-end packet latency features by ALBA-WUR is comparable to that of ALBA-R. While the main goal of energy optimization approaches is motes lifetime maximization, in recent years a new research branch in WSN emerged: Energy Neutrality. In contrast to lifetime maximization approach, energy neutrality foresees the perennial operation of the network. This can be achieve only making motes use the harvested energy at an appropriate rate that guarantees an everlasting lifetime. In this thesis we stress that maximizing energy efficiency of a hardware platform dedicated to WSNs is the key to reach energy neutral operation (ENO), still providing reasonable data rates and delays. To support this conjecture, we designed a new hardware platform equipped with our wake-up radio (WUR) system able to support ENO, the MagoNode++. The MagoNode++ features a energy harvester to gather energy from solar and thermoelectric sources, a ultra low power battery and power management module and our WUR system to improve the energy efficiency of wireless communications. To prove the goodness in terms of current consumption of the MagoNode++ we ran a series of experiments aimed to assess its performance. Results show that the MagoNode++ consumes only 2.8 µA in Low Power Mode with its WRx module in listening mode. While carrying on our research work on solutions trying to mitigate the energy problem, we also faced a challenging application context where the employment of WSNs is considered efficient and effective: structural health monitoring (SHM). SHM deals with the early detection of damages to civil and industrial structures and is emerging as a fundamental tool to improve the safety of these critical infrastructures. In this thesis we present two real world WSNs deployment dedicated to SHM. The first concerned the monitoring of the Rome B1 Underground construction site. The goal was to monitor the structural health of a tunnel connecting two stops. The second deployment concerned the monitoring of the structural health of buildings in earthquake-stricken areas. From the experience gained during these real world deployments, we designed the Modular Monitoring System (MMS). The MMS is a new low-power platform dedicated to SHM based on the MagoNode. We validated the effectiveness of the MMS low-power design performing energy measurements during data acquisition from actual transducers
    corecore