
Impulsive Interference Avoidance in

Dense Wireless Sensor Networks

Nicholas M. Boers1, Ioanis Nikolaidis2, and Pawel Gburzynski3

1 Department of Computer Science, Grant MacEwan University,
10700 104 Ave. NW, Edmonton, Alberta T5J 4S2, Canada, boersn@macewan.ca

2 Department of Computing Science, University of Alberta, 2-21 Athabasca Hall,
Edmonton, Alberta T6G 2E8, Canada, nikolaidis@ualberta.ca

3 Olsonet Communications Corporation, 51 Wycliffe Street, Ottawa, Ontario
K2G 5L9, Canada, pawel@olsonet.com

Abstract. Wireless sensor networks (WSNs) are subject to interference
from other users of the radio-frequency (RF) medium. If the WSN nodes
can recognize the interference pattern, they can benefit from steering
their transmissions around it. This possibility has stirred some interest
among researchers involved in cognitive radios, where special hardware
has been postulated to circumvent non-random interference. Our goal
is to explore ways of enhancing medium access control (MAC) schemes
operating within the framework of traditional off-the-shelf RF modules
applicable in low-cost WSN motes, such that they can detect interfer-
ence patterns in the neighbourhood and creatively respond to them,
mitigating their negative impact on the packet reception rate. In this
paper, and based on previous work on the post-deployment character-
ization of a channel aimed at identifying “spiky” interference patterns,
we describe (a) a way to incorporate interference models into an existing
WSN emulator and (b) the subsequent evaluation of a proof-of-concept
MAC technique for circumventing the interference. We found that an
interference-aware MAC can improve the packet delivery rates in these
environments at the cost of increased, but acceptable, latency.

Keywords: classification, interference, sampling, wireless sensor net-
works, channel modelling, medium access control

1 Introduction

WSN nodes must be particularly resilient to interference because the ISM bands
are heavily used, particularly in dense urban environments [1]. ISM sources are
quite varied, including cordless telephones/headphones, wireless local area net-
works (WLANs), and microwave ovens. Most existing studies are based either
on over-simplistic environmental models assuming Gaussian background noise,
or on the assumption that interference arises from peer devices (members of the
same networked wireless system). The two types of disturbance have received
considerable attention in research under the umbrellas of channel modelling and

MAC protocol design, respectively. The third type of disturbance, namely ex-
ternal interference from a different wireless system (possibly even from a system
whose purpose is not data communication per se) has been much overlooked.
Based on our empirical findings, external interference is already a major source of
communication problems in WSN systems, especially those deployed in densely
populated urban areas.

ch. 1, port 10-110

-90

ch. 18, port 2-110

-90

ch. 69, port 12-110

-90

R
S

S
I

(d
B

m
)

ch. 30, port 0-110

-90

ch. 117, port 10-110

-90

0 5 10 15 20 25 30
time (s)

Fig. 1. The different primary interference classes identified in our RSSI traces. The
middle pattern, representing frequent impulses of short duration, is the focus of this
work.

Specifically, external interference became blatantly obvious to us in our 2008
deployment of the Smart Condo – a network to passively monitor an independent
living environment [2, 3]. As soon as its simple transceivers (RF Monolithics
TR8100) began their operation (at 916.5 MHz), we noticed significant packet
losses even over short distances and with the obvious lack of interference from
peers. Those losses disappeared when the same set of motes was moved to another
environment (several blocks away) for an in-lab study of their poor performance.
Having thus confirmed that the environment itself was the culprit, we returned
to it with another WSN comprised of 16, more flexible, motes to assess the
character of the external interference. We specifically wanted that assessment
to be carried out by a WSN, as opposed to some specialized and sophisticated
spectrum analyzing equipment, because we wanted to determine how WSNs
could analyze and respond to interference problems on their own.

The nodes of the new WSN were equipped with the Texas Instruments
CC1100, capable of collecting digitized samples of the received signal strength

indicator (RSSI) at high rates over varying channels. Using that network, we
took an extensive collection of RSSI traces sampled at 5000 Hz on 256 channels
ranging from 904 to 954 MHz [4]. After plotting those traces as time series data,
we immediately identified a number of recurrent interference patterns, includ-
ing the one that caused our original alarming packet losses (Figure 1, middle).
Reflecting back on that negative experience, although the TR8100 transmitted
at reasonably powerful levels (10 dBm), it used a very simple encoding scheme
(on-off keying) that is particularly susceptible to interference [5, 6]. The analysis
and the characterization and classification of interference patterns using WSN–
suitable low-complexity techniques is described in two earlier publications [4, 7].
Here, we present just a summary of the main results and describe how we were
able to (a) integrate interference sources in a high–quality simulation testbed
and (b) evaluate a simple MAC protocol that takes advantage of particular in-
terference patterns.

Specifically, we explore the avoidance of impulsive (spiky) interference in
dense wireless sensor networks (Figure 1, middle). We first review work related
to the general characterization of channels (Section 2), and we then summarize
our previously developed techniques capable of identifying this particular pat-
tern. In Section 3, we describe the extension of an existing simulator with this
characterization. After modelling the interference, we incorporate the classifier
and a proof-of-concept MAC into a WSN application (Section 4) and present
the results from simulating it (Section 5). Finally, in Section 6, we present some
concluding remarks.

2 Related Work

When exploring interference, some researchers have focused on the interaction
of specific protocols, e.g., IEEE 802.11b (WLAN), 802.15.1 (Bluetooth), and
802.15.4 (ZigBee) [8]. Similarly, others have concentrated their efforts on specific
expected interferers, e.g., Chandra [9] used a spectrum analyzer in a 3-story
building to explore the noise generated by electronic equipment in a workshop,
a photocopier, elevator, and fluorescent tubes. In this section, we describe the
small body of work that addresses interference more generally.

Using sensor platforms, Srinivasan, Dutta, Tavakoli, and Levis [10] studied
packet delivery performance. With nodes synchronized, they encountered strong,
spatially-correlated impulses (up to -35 dBm or higher) in their traces. Given
the high correlation, they concluded that the spikes originated externally to the
nodes.

Researchers working on closest-fit pattern matching (CPM) sampled noise
in (a) WLAN-enabled buildings, (b) WLAN-enabled outdoor areas, (c) out-
door quiet areas, and (d) controlled areas [11, 12]. They sampled channels both
overlapping and non-overlapping an IEEE 802.11b network and observed three
characteristics: (a) spikes sometimes as strong as 40 dB above the noise floor,
(b) many of the spikes were periodic, and (c) over time, the noise patterns
changed. In their work, they offered little description of the patterns beyond

what we summarize here. Instead of focusing on specific patterns, they devel-
oped a modelling approach that initially replays the recorded trace and then
estimates future points based on computed probabilities.

More recently, Srinivasan, Dutta, Tavakoli, and Levis [8] expanded on much
of their previous work. With six synchronized nodes, they sampled RSSI values at
128 Hz and explored the correlation in the noise traces. They observed 802.11b
interference as high at 45 dB above the noise floor, and in their figures, this
interference appears as periodic impulses at roughly 36 Hz.

In our recent work, we explored measurements from a grid of sixteen nodes
in an indoor urban environment [4]. Within the 80 m2 space, we deployed the
grid with 1.83 m spacing and elevated each node 28 cm off of the floor. We
connected all of the nodes to a single computer using USB and then proceeded
to simultaneously measure each node’s RSSI value sampled at 5000 Hz. To the
best of our knowledge, this sampling rate has been unmatched so far in a WSN
framework. Over a period of roughly 2.5 hours, we scanned the 256 available
channels ranging from 904 to 954 MHz.

Upon inspecting our high resolution traces, we identified the five recurrent
patterns that we show in Figure 1. Specifically, the patterns are: (1) quiet, (2)
sparse (random) impulses, (3) frequent (strongly periodic) impulses, (4) high
level interference, and (5) shifting-mean interference. It would be highly pre-
sumptuous to claim that any interference patterns that we observed in a par-
ticular environment and on a particular day should be immediately generalized
into blanket rules applicable to all wireless systems. However, the very fact that
we clearly saw a small number of simple and easily discernible patterns and that
some of those patterns have been uncovered before strengthens our confidence
that the set of patterns we observed can be considered representative.

In this paper, we are interested in exploiting the pattern of periodic impulse
“spikes.” From the original 4096 traces (16 nodes× 256 channels), we randomly
sampled 1024 traces and carefully hand-classified them for the presence of fre-
quent periodic impulses. We encountered the pattern in 154 of the traces, and
some of these traces contained other patterns as well. Since each full trace con-
sists of 175 000 points, and because we are interested in a small set of samples (to
conserve the amount of energy spent to sampling the medium), we subsampled

the traces using even and Poisson subsampling techniques. For each trace of sub-
samples, we record whether the periodogram indicates the presence of frequent
periodic impulses. Furthermore, in the periodogram calculation, we simplified
the computation of the (co)sine by approximating it with values from a lookup
table which contained quantized approximations of the (co)sine function. As re-
ported in [7], we found that the automated classification yielded the same results
as the hand classification (i.e., our ground truth) in the vast majority of cases,
and hence the classifier was deemed adequate for our purposes. We also found
that the performance of the classifier did not improve significantly past the point
where 4000 samples were used.

3 Simulation

One need arising in the study of networks under interference patterns observed
in traces collected from real networks is that, in order to produce repeatable
simulation experiments, it is essential to model the interference sources (diverse
as they might be) in a manner that is both general and easily implementable on
a simulator. An ideal approach, advocated in this paper, would be to support a
form of “scripted” interference source behaviours. Since our platform of choice
for application development and for emulation and simulation is PicOS [13], we
crafted simulated interference patterns in the idiom of PicOS threads. PicOS
is conceptually derived from the SMURPH/SIDE simulator. Rather recently,
PicOS gained wireless channel support [14] and the ability to emulate PicOS
applications at the level of their API (application programming interface) using
a component named VUE2 [15] which leverages SIDE to provide an accurate
simulation environment on which pre-deployment evaluation of protocols and
systems can be conducted. Given this close relationship between our chosen OS
and a mature simulator, our decision to use SIDE was quite natural.

We extended SIDE by adding the ability to define scripted external impulsive
interference. The extension consists of (a) a user-specified configuration, (b) a
new “node” type within the simulator, and (c) threads running on those nodes
to produce the specified interference. Additional tags and attributes added to an
existing XML (extensible markup language) configuration file provide the user-
specified interference configuration. A new interferers attribute to the network
tag indicates the number of interferers in the environment, e.g.,

<network nodes="40" interferers="3">

The user can use the new <interferers> tag to identify an interferer-specific
block within the configuration akin to the existing <nodes> tag. Within this new
section, the user can define the parameters for each interferer, e.g.,

<interferer number="0" type="impulsive">

<location type="random">170.0 170.0</location>

<pattern>

R 0.245 s ; random delay

P ; start periodic portion

O 0.0 dBm 3 dB ; on at 0.0 dBm with 3 dB sd

T 0.005 s ; delay

F ; off

T 0.245 s ; delay then implicit jump to P

</pattern>

</interferer>

The attribute and value type="random" for the location causes SIDE to gen-
erate a new location every time the simulator starts (assuming a new random
number generator seed). It uses the specified coordinates to bound the random
values. Internally, each interferer becomes an object within the simulation, not
unlike what already occurs for nodes. For these new objects, the user can create
a library of processes, each capable of producing a certain class of interference.

For this work, we implemented an Impulsive process to simulate user-specified
impulsive interference.

The body of the <pattern> tag essentially provides the interference behaviour

script for the process Impulsive to follow. For an impulsive interferer, SIDE sup-
ports following commands:
R: delay for a random duration between 0 and the double argument (in seconds),
T: delay for the specified duration (in seconds),
O: generate interference at the specified power level (in dBm) with the specified
standard deviation (in dB),
F: stop the generation of interference, and
P: mark the start of the periodic portion of the pattern.
Essentially, the Interferer process interprets (in a fetch-decode-execute style)
the command sequence provided in the specification block. Once the end of the
list of commands is reached, an implicit jump occurs to the command immedi-
ately following the P command.

We placed a number of synchronized impulsive interferers in a virtual envi-
ronment, and using our earlier sampling application [4], collected a number of
virtual traces (e.g., Figure 2). With very little tweaking, we were able to make
the simulated traces match the substance of the real traces. Upon close inspec-
tion, there are slight differences, e.g., the simulated traces lack some random
non-periodic components, and with a little more work, we could include these
in our model as well. That said, the existing detail suffices for the classification
and medium access control techniques that we implement next.

-110

-90

ch. 66, port 0

-110

-90

1 2 3 4 5 6

simulated

time (s)

R
S

S
I

(d
B

m
)

Fig. 2. An actual trace (top) plotted with a simulated trace (bottom). We used the
same application to collect both traces.

4 Exploiting Interference Classification in a MAC

Protocol

4.1 On-line Classifier

To classify channels with regularly-spaced short-duration impulsive interference,
we implement the approximate least-squares spectral analysis (LSSA) technique
described in [7]. In the transceiver’s transmit state machine, we introduce three
new states to accommodate the classifier:

CLS INIT Initializes the variables required for classification and immediately ad-
vances to CLS MEANEST.

CLS MEANEST A visit to this state represents the measurement of a single RSSI
sample to compute the mean RSSI estimate. It remains in this state for 200
iterations prior to transitioning to CLS SAMPLE – a number of iterations that
proved reasonable in our early tests. The delay between each iteration is
uniformly randomly distributed between 0 and 7 ms.

CLS SAMPLE A visit to this state represents obtaining a single RSSI sample for
calculating the LSSA. It remains in this state for 5000 iterations which span
approximately 17.5 s and then transitions to the (regular) MAC state. The
delay between each iteration is uniformly randomly distributed between 0
and 7 ms. We used more iterations than the minimal 4000 identified earlier
simply as a precaution.

The complete classification process lasts just over 18 s during which we prevent
nodes from communicating. If the application wishes to transmit packets during
the process, they are simply queued until the classifier completes. It is implied
that in a real deployment, the classification task is to be executed occasionally
to assess the new levels and periods of any periodic impulse interference.

4.2 Pattern-aware Medium Access Control (PA-MAC)

The output from the classifier indicates the presence of periodic short-duration
impulsive interference at any of the tested frequencies. Our proof-of-concept
pattern-aware MAC (PA-MAC) then uses this output in its attempt to steer
transmissions around the impulses. In fact, the protocol makes a virtue out of
interference, because the periodic interference becomes well-defined time points
around which to anchor transmissions (with some back-off of course as we will
later see). Stretching definitions a bit, the interference becomes a means for
implicit synchronization of the MAC transmissions across nodes.

In our approach, we make observations about the interference at a transmit-
ting node and assume that they also hold for the receiving node, i.e., we assume
a significant amount of correlation in the interference between nodes. Particu-
larly in small dense deployments, we have found this assumption to hold, e.g., we
observed significant correlation in the traces collected in the Smart Condo. More-
over, other researchers have observed significant correlations in packet losses [16].

Even in larger environments, this assumption may hold given either a particu-
larly strong interferer or a collection of correlated interferers.

To implement PA-MAC, we introduce one further state to the transceiver’s
state machine: MAC SEARCH with the intention to use it as a way to track the
impulse instants. Initially after the classification, and then again regularly after
each transmission window, the process will enter this state to sample the channel
to track the next impulse. Successfully finding an impulse causes the transceiver
thread to (a) set a timer to mark the end of the next transmission window,
i.e., the expected arrival of the next impulse and (b) delay for the expected
duration of the currently identified impulse and then transition to the thread’s
primary state (XM LOOP). Once in the main loop, the driver will retrieve outgoing
packets as they become available and transmit them until the expiration of the
first timer. At that point, the process reenters MAC SEARCH where it attempts to
track the next impulse.

For the sake of comparison, a simple baseline MAC protocol is listen before

transmitting (LBT), which, other than sensing prior to attempting transmission,
resolves contention using a random back-off. Given multiple transmitting nodes,
the random back-off leaves little opportunity for nodes to synchronize. With
PA-MAC, however, our regular tracking of the interference introduces a new
opportunity for nodes to synchronize, which could ultimately cause a number of
nodes to transmit at the same time. We eliminated this point of contention by
introducing an additional random back-off.

5 Results

We evaluated the pattern-aware MAC within the interference-generating sim-
ulator, using the built-in shadowing channel model, and we tweaked the sim-
ulator’s parameters to represent our physical hardware. We include results for
both single- and multi-hop random topologies. For a given configuration, we av-
erage the measurements from 100 different topologies, each with its own traffic
pattern, and plot the results with 95% confidence intervals.

5.1 Single-hop

The single-hop configurations consist of 19 source nodes, one destination node,
and two interferers, and the simulator places them all randomly within an 18 m×

18 m field. Since the model neither includes obstructions nor considers radio
irregularity [17], these dimensions guarantee that the destination is within the
transmission range of every source node. Each node transmits at a rate of 10 kbps
and a transmission power of -20 dBm. The interferers introduce 5 ms pulses of
impulsive interference at a period of 4 Hz and -30 dBm.

We first evaluated the effect of varying the packet length (Figure 3) on the
packet reception rates (PRRs) and latency. Note that the destination node does
not acknowledge received packets and nodes make no attempt to retransmit lost
packets. We measure latency from the application perspective: the time that

elapses between receiving the packet from the application (at the transmitter)
and the application receiving the packet (at the receiver). Note that the effect of
varying the packet length should be seen relative to the frequency of impulsive
interference. Alternatively, we could have kept the packet length the same and
changed the interference’s period. We chose the former approach. In these tests,
nodes generated new packets according to an exponential distribution with mean
50 s to reduce (if not practically eliminate) the effect of congestion. For each run
of the simulation, we generate 500 s of input and allow the simulator to run for
600 s (in case of delayed packets).

0
.0

6
0

.1
0

0
.1

4
la

te
n
cy

 (
s)

LBT MAC
pattern-aware MAC
no interference

30 40 50 60
length (bytes)

0
.8

5
0

.9
0

0
.9

5
1

.0
0

P
R

R
 (

%
)

Fig. 3. In a dense single-hop network, the effect of the packet length on the packet
reception ratio and the latency.

When increasing the length, the PRR decreases for all configurations and the
latency increases (as expected). In terms of PRRs, PA-MAC performs similarly
to the quiet configuration because it successfully steers the transmissions around
the interference. To obtain these PRRs, it ends up delaying transmissions that
may collide with the interference, and the latency graph reflects this behaviour.
The traditional LBT MAC’s PRRs suffer at a greater rate than the other two
configurations as more packets are lost to collisions than simply the non-zero
bit error rate. The traditional LBT MAC shows higher latency than what is
achieved by the quiet channel, demonstrating that the LBT MAC yields also
occasionally to interference because it senses the medium as being busy.

We also evaluated the effect of varying the packet generation rate (Figure 4)
on the PRRs and latency. In these experiments, we set the packet length to its
maximum (60 bytes) in order to accentuate the variable’s effect.

0
.0

0
.5

1
.0

1
.5

la
te

n
cy

 (
s)

LBT MAC
pattern-aware MAC
no interference

2 4 6 8 10 12
per-node inter-arrival � (s)

0
.2

0
.4

0
.6

0
.8

1
.0

P
R

R
 (

%
)

Fig. 4. In a dense single-hop network, the effect of the mean latency between per-
transmitter packet introductions on the packet reception ratio and the latency.

Under high congestion (mean packet inter-arrival time at each node µ <

2 s), the packet reception rates drop significantly for all methods in this dense
network, and the LBT MAC and PA-MAC perform very similarly. Since all
nodes are within range of each other, all transmissions will generate interference,
but that interference may not be sufficiently strong for a node to recognize the
medium as busy. The PRRs are lower for both of the interference configurations
because the MACs will sometimes yield to the interference, leaving less of a
window for data transmission. At lower levels of congestion, the PA-MAC tends
towards the performance of the quiet configuration.

5.2 Multi-hop

The multi-hop configurations consist of 39 source nodes, one destination node,
and three interferers, and the simulator places them all randomly within a
170 m× 170 m field. As with the single-hop scenario, nodes transmit at a rate of
10 kbps and with transmission power -20 dBm. In this case, the three interferers
produce a similar interference pattern to the single-hop case, but transmit at
0 dBm rather than -30 dBm. Given the larger field, we made this change to
ensure the visibility of interferers across the network.

The transmitting nodes use the tiny ad hoc routing protocol, TARP [18], to
deliver packets to the destination. TARP is a light-weight on-demand routing
protocol that quickly converges to the shortest path in static networks. Because
it lacks explicit control packets (minimal control information is present in the
packet header) it does not inflate the overall traffic needed to support it. Al-
though the application only demands one-way communication, the destination

sends short 14-byte replies to each source node for the benefit of the routing
protocol. Note that communication continues to be unacknowledged, and nodes
make no attempt to retransmit lost packets.

Given random node locations, we need to take precautions to ensure that each
source node has a path to the destination node. Immediately after generating a
random layout, the simulator will search for a path from every source to the single
destination while ensuring that each hop is less than the maximum transmission
range. If the procedure finds a disconnected node, the simulator will generate a
completely new node placement until a path exists between every pair of nodes,
i.e., until the communication graph is connected.

Like in the single-hop case, we first evaluate the effect on varying the packet
length on the PRRs and latency (Figure 5). To reduce congestion in the multi-
hop environment given the high initial number of retransmissions, we lower the
packet generation rate to follow an exponential distribution with mean of 200 s.
Given the lower packet generation rate, we generate 2000 s of input and allow
the simulator to run for 2100 s.

0
.2

5
0

.3
5

0
.4

5
la

te
n
cy

 (
s)

LBT MAC
pattern-aware MAC
no interference

30 40 50 60
length (bytes)

0
.4

0
.6

0
.8

P
R

R
 (

%
)

Fig. 5. In a connected multi-hop network, the effect of the packet length on the packet
reception ratio and the latency.

As with the single-hop case, we notice decreasing PRRs and increasing la-
tencies as the length increases, and PA-MAC again follows the PRR of the quiet
configuration. However, unlike the single-hop case, we notice that the quiet con-
figuration no longer provides the baseline for delay. To explore this phenomenon,
we investigate the hop lengths compared to packet lengths (Figure 6).

Since the network is static, we would expect little change in the expected
number of hops as the packet length increases. However, we notice that the

30 40 50 60

3
.0

3
.4

3
.8

length (bytes)

h
o

p
s

LBT MAC
pattern-aware MAC
no interference

Fig. 6. In a connected multi-hop network, the effect of the packet length on the mean
number of hops.

expected number of hops decreases for the LBT MAC as the packet length
increases. The significant number of packet losses cause this behaviour: packets
are more likely to be lost on the long paths, and these lost packets will not factor
into the latency calculations.

Our final graph shows the effect of varying the packet generation rate on the
PRRs and latency (Figure 7). In these experiments, we set the packet length to
its maximum (60 bytes) in order to accentuate the variable’s effect.

0
.2

5
0

.3
5

0
.4

5
0

.5
5

la
te

n
cy

 (
s)

LBT MAC
pattern-aware MAC
no interference

0 50 100 150 200
per-node inter-arrival � (s)

0
.1

0
.3

0
.5

0
.7

P
R

R
 (

%
)

Fig. 7. In a connected multi-hop network, the effect of the mean latency between per-
transmitter packet introductions on the packet reception ratio and the latency.

Here, the PRR rate follows a similar trend to the single-hop case just at
significantly lower levels. Unlike with the single-hop case, the latency curve again

increases as we slow the rate of packet generation. As with the packet lengths,
less congestion results in an increased number of the long paths succeeding which
subsequently increase the latency.

In summary, the results demonstrate the benefits of using interference in a
constructive manner. The benefits are evident even if used to augment a trivial
MAC protocol, such as a rudimentary LBT. Naturally, more elaborate schemes
can be devised. Suffice is to say that the impulse interference is the basis of
synchronization around which a self-organizing TDMA-like MAC protocol could
eventually be constructed.

6 Conclusion

In this paper, based on our previous work on simplification of the Lomb peri-
odogram for the post-deployment identification of frequent impulsive interfer-
ence, we extend an existing simulator with a flexible interface for the production
of impulsive interference. Subsequently, we incorporated the impulse classifier
and a proof-of-concept pattern-aware MAC (PA-MAC) into the simulator and
simulated a variety of different configurations. We found that PA-MAC could
improve the packet reception rates in both single- and multi-hop environments
at the cost of increased latency.

In terms of future work, we plan to explore protocols that would allow nodes
to come to a consensus about the channel classification. An immediate result
from this would be the weakening of our correlation assumption. Such a pro-
tocol would allow nodes to join the network without pausing communication
while the evaluation occurs. Moreover, it may make sense to delegate the task
of channel sampling solely to a subset of nodes (possibly the ones that have
better energy reserves) while providing a way of disseminating the information
about interference patterns to the rest of the network. Generally, the problem
of optimal collaborative identification of interference patterns and selective dis-
semination of knowledge (not all nodes need to receive the same information)
appears as an interesting topic for a further study.

References

1. J. Do, D. Akos, and P. Enge. L and S bands spectrum survey in the San Francisco
Bay area. In PLANS 2004: Position Location and Navigation Symposium, pages
566–572, 2004.

2. N. M. Boers, D. Chodos, J. Huang, E. Stroulia, P. Gburzynski, and I. Nikolaidis.
The Smart Condo: Visualizing independent living environments in a virtual world.
In PervasiveHealth ’09: Proceedings from the 3rd International Conference on Per-

vasive Computing Technologies for Healthcare, London, UK, Apr. 2009.
3. E. Stroulia, D. Chodos, N. M. Boers, J. Huang, P. Gburzynski, and I. Nikolaidis.

Software engineering for health education and care delivery systems: The Smart
Condo project. In SEHC ’09: Proceedings from the 31st International Conference

on Software Engineering, Vancouver, Canada, 2009.

4. N. M. Boers, I. Nikolaidis, and P. Gburzynski. Patterns in the RSSI traces from an
indoor urban environment. In CAMAD ’10: IEEE 14th International Workshop

on Computer Aided Modeling and Design of Communication Links and Networks,
Coconut Creek, FL, Dec. 3-4, 2010.

5. M. Vieira, J. Coelho, C.N., J. da Silva, D.C., and J. da Mata. Survey on wireless
sensor network devices. In ETFA ’03: Proceedings of the IEEE Conference on

Emerging Technologies and Factory Automation, volume 1, pages 537 – 544, Sept.
2003.

6. J. Oetting. A comparison of modulation techniques for digital radio. IEEE Trans-

actions on Communications, 27(12):1752 – 1762, Dec. 1979.
7. N. M. Boers, I. Nikolaidis, and P. Gburzynski. Sampling and classifying interference

patterns in a wireless sensor network. ACM Transactions on Sensor Networks, (to
appear).

8. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical study of low-power
wireless. ACM Transactions on Sensor Networks, 6(2):1–49, 2010.

9. A. Chandra. Measurements of radio impulsive noise from various sources in an
indoor environment at 900 MHz and 1800 MHz. In 13th IEEE International Sym-

posium on Personal, Indoor and Mobile Radio Communications, volume 2, pages
639–643, Sept. 2002.

10. K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Understanding the causes of
packet delivery success and failure in dense wireless sensor networks. In SenSys ’06:

Proceedings of the 4th International Conference on Embedded Networked Sensor

Systems, pages 419–420, New York, NY, 2006. ACM.
11. H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through noise mod-

eling. In IPSN ’07: Proceedings of the 6th International Conference on Information

Processing in Sensor Networks, pages 21–30, New York, NY, USA, 2007. ACM.
12. T. Rusak and P. Levis. Physically-based models of low-power wireless links using

signal power simulation. Computer Networks, 54(4):658 – 673, 2010.
13. E. Akhmetshina, P. Gburzynski, and F. Vizeacoumar. PicOS: A tiny operating

system for extremely small embedded platforms. In H. R. Arabnia and L. T. Yang,
editors, Embedded Systems and Applications, pages 116–122. CSREA Press, 2003.

14. P. Gburzynski and I. Nikolaidis. Wireless network simulation extensions in
SMURPH/SIDE. In WSC’06: Proceedings of the 2006 Winter Simulation Con-

ference, Monterey, California, Dec. 2006.
15. N. M. Boers, P. Gburzynski, I. Nikolaidis, and W. Olesinski. Developing wireless

sensor network applications in a virtual environment. Telecommunication Systems,
45(2):165 – 176, 2010.

16. K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim, P. Levis, and B. Krishna-
machari. The κ-factor: Inferring protocol performance using inter-link reception
correlation. In MobiCom ’10: Proceedings of the 16th Annual International Con-

ference on Mobile Computing and Networking, pages 317–328, Chicago, IL, USA,
2010. ACM.

17. G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity
on wireless sensor networks. In MobiSys ’04: Proceedings of the 2nd International

Conference on Mobile Systems, Applications, and Services, pages 125–138, New
York, NY, USA, 2004. ACM.

18. W. Olesinski, A. Rahman, and P. Gburzynski. TARP: A tiny ad-hoc routing pro-
tocol for wireless networks. In ATNAC ’03: Proceedings of Australian Telecommu-

nications Networks and Applications Conference, Melbourne, Australia, Dec. 8–10,
2003.

