279,182 research outputs found
Layout Decomposition for Quadruple Patterning Lithography and Beyond
For next-generation technology nodes, multiple patterning lithography (MPL)
has emerged as a key solution, e.g., triple patterning lithography (TPL) for
14/11nm, and quadruple patterning lithography (QPL) for sub-10nm. In this
paper, we propose a generic and robust layout decomposition framework for QPL,
which can be further extended to handle any general K-patterning lithography
(K4). Our framework is based on the semidefinite programming (SDP)
formulation with novel coloring encoding. Meanwhile, we propose fast yet
effective coloring assignment and achieve significant speedup. To our best
knowledge, this is the first work on the general multiple patterning
lithography layout decomposition.Comment: DAC'201
RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins
The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning
Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies
In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes
Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset
Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis
Cell patterning on photolithographically defined parylene-C:SiO2 substrates
Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO(2 )wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO(2) regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology
Atomic layer etching of SiO2 with Ar and CHF 3 plasmas: A self-limiting process for aspect ratio independent etching
With ever increasing demands on device patterning to achieve smaller critical dimensions, the need for precise, controllable atomic layer etching (ALE) is steadily increasing. In this work, a cyclical fluorocarbon/argon plasma is successfully used for patterning silicon oxide by ALE in a conventional inductively coupled plasma tool. The impact of plasma parameters and substrate electrode temperature on the etch performance is established. We achieve the self-limiting behavior of the etch process by modulating the substrate temperature. We find that at an electrode temperature of −10°C, etching stops after complete removal of the modified surface layer as the residual fluorine from the reactor chamber is minimized. Lastly, we demonstrate the ability to achieve independent etching, which establishes the potential of the developed cyclic ALE process for small scale device patterning
Controlled Growth, Patterning and Placement of Carbon Nanotube Thin Films
Controlled growth, patterning and placement of carbon nanotube (CNT) thin
films for electronic applications are demonstrated. The density of CNT films is
controlled by optimizing the feed gas composition as well as the concentration
of growth catalyst in a chemical vapor deposition process. Densities of CNTs
ranging from 0.02 CNTs/{\mu}m^2 to 1.29 CNTs/{\mu}m^2 are obtained. The
resulting pristine CNT thin films are then successfully patterned using either
pre-growth or post-growth techniques. By developing a layered photoresist
process that is compatible with ferric nitrate catalyst, significant
improvements over popular pre-growth patterning methods are obtained.
Limitations of traditional post-growth patterning methods are circumvented by
selective transfer printing of CNTs with either thermoplastic or metallic
stamps. Resulting as-grown patterns of CNT thin films have edge roughness (< 1
{\mu}m) and resolution (< 5 {\mu}m) comparable to standard photolithography.
Bottom gate CNT thin film devices are fabricated with field-effect mobilities
up to 20 cm^2/Vs and on/off ratios of the order of 10^3. The patterning and
transfer printing methods discussed here have a potential to be generalized to
include other nanomaterials in new device configurations
Reversible DNA micro-patterning using the fluorous effect
We describe a new method for the immobilisation of DNA into defined patterns with sub-micron resolution, using the fluorous effect. The method is fully reversible via a simple solvent wash, allowing the patterning, regeneration and re-patterning of surfaces with no degradation in binding efficiency following multiple removal/attachment cycles of different DNA sequences
Production and mechanical characterization of graphene micro-ribbons
Patterning of graphene into micro- and nano-ribbons allows for the tunability
in emerging fields such as flexible electronic and optoelectronic devices, and
is gaining interest for the production of more efficient reinforcement for
composite materials. In this work we fabricate micro-ribbons from CVD graphene
by combining UV photolithography and dry etching oxygen plasma treatments.
Raman spectral imaging confirms the effectiveness of the patterning procedure,
which is suitable for large-area patterning of graphene on wafer-scale, and
confirms that the quality of graphene remains unaltered. The produced
micro-ribbons were finally transferred and embedded into a polymeric matrix and
the mechanical response was investigated by in-situ mechanical investigation
combining Raman spectroscopy and tensile/compressive tests
- …
