3,705 research outputs found

    Author recognition using Locality Sensitive Hashing & Alergia (Stochastic Finite Automata)

    Get PDF
    In today’s world data grows very fast. It is difficult to answer questions like 1) Is the content completely written by this author, 2) Did he get few sentences or pages from another author, 3) Is there any way to identify actual author. There are many plagiarism software’s available in the market which identify duplicate content. It doesn’t understand writing pattern involved. There is always a necessity to make an effort to find the original author. Locality sensitive hashing is one such standard for applying hashing to recognize authors writing pattern

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update

    Activity Recognition Using Probabilistic Timed Automata

    Get PDF

    Pattern Recognition In Non-Kolmogorovian Structures

    Full text link
    We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov's axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems. Finally, we present some examples and discuss the computational complexity of the quantum pattern recognition problem, showing that the most important quantum computation algorithms can be described as non-Kolmogorovian pattern recognition problems
    • …
    corecore