285,902 research outputs found

    Path Signatures for Seizure Forecasting

    Full text link
    Forecasting the state of a system from an observed time series is the subject of research in many domains, such as computational neuroscience. Here, the prediction of epileptic seizures from brain measurements is an unresolved problem. There are neither complete models describing underlying brain dynamics, nor do individual patients exhibit a single seizure onset pattern, which complicates the development of a `one-size-fits-all' solution. Based on a longitudinal patient data set, we address the automated discovery and quantification of statistical features (biomarkers) that can be used to forecast seizures in a patient-specific way. We use existing and novel feature extraction algorithms, in particular the path signature, a recent development in time series analysis. Of particular interest is how this set of complex, nonlinear features performs compared to simpler, linear features on this task. Our inference is based on statistical classification algorithms with in-built subset selection to discern time series with and without an impending seizure while selecting only a small number of relevant features. This study may be seen as a step towards a generalisable pattern recognition pipeline for time series in a broader context

    EEG Eye State Identification Using Incremental Attribute Learning with Time-Series Classification

    Get PDF
    Eye state identification is a kind of common time-series classification problem which is also a hot spot in recent research. Electroencephalography (EEG) is widely used in eye state classification to detect human's cognition state. Previous research has validated the feasibility of machine learning and statistical approaches for EEG eye state classification. This paper aims to propose a novel approach for EEG eye state identification using incremental attribute learning (IAL) based on neural networks. IAL is a novel machine learning strategy which gradually imports and trains features one by one. Previous studies have verified that such an approach is applicable for solving a number of pattern recognition problems. However, in these previous works, little research on IAL focused on its application to time-series problems. Therefore, it is still unknown whether IAL can be employed to cope with time-series problems like EEG eye state classification. Experimental results in this study demonstrates that, with proper feature extraction and feature ordering, IAL can not only efficiently cope with time-series classification problems, but also exhibit better classification performance in terms of classification error rates in comparison with conventional and some other approaches

    ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์žฅ๋ณ‘ํƒ.Pattern recognition within time series data became an important avenue of research in artificial intelligence following the paradigm shift of the fourth industrial revolution. A number of studies related to this have been conducted over the past few years, and research using deep learning techniques are becoming increasingly popular. Due to the nonstationary, nonlinear and noisy nature of time series data, it is essential to design an appropriate model to extract its significant features for pattern recognition. This dissertation not only discusses the study of pattern recognition using various hand-crafted feature engineering techniques using physiological time series signals, but also suggests an end-to-end deep learning design methodology without any feature engineering. Time series signal can be classified into signals having periodic and non-periodic characteristics in the time domain. This thesis proposes two end-to-end deep learning design methodologies for pattern recognition of periodic and non-periodic signals. The first proposed deep learning design methodology is Deep ECGNet. Deep ECGNet offers a design scheme for an end-to-end deep learning model using periodic characteristics of Electrocardiogram (ECG) signals. ECG, recorded from the electrophysiologic patterns of heart muscle during heartbeat, could be a promising candidate to provide a biomarker to estimate event-based stress level. Conventionally, the beat-to-beat alternations, heart rate variability (HRV), from ECG have been utilized to monitor the mental stress status as well as the mortality of cardiac patients. These HRV parameters have the disadvantage of having a 5-minute measurement period. In this thesis, human's stress states were estimated without special hand-crafted feature engineering using only 10-second interval data with the deep learning model. The design methodology of this model incorporates the periodic characteristics of the ECG signal into the model. The main parameters of 1D CNNs and RNNs reflecting the periodic characteristics of ECG were updated corresponding to the stress states. The experimental results proved that the proposed method yielded better performance than those of the existing HRV parameter extraction methods and spectrogram methods. The second proposed methodology is an automatic end-to-end deep learning design methodology using Bayesian optimization for non-periodic signals. Electroencephalogram (EEG) is elicited from the central nervous system (CNS) to yield genuine emotional states, even at the unconscious level. Due to the low signal-to-noise ratio (SNR) of EEG signals, spectral analysis in frequency domain has been conventionally applied to EEG studies. As a general methodology, EEG signals are filtered into several frequency bands using Fourier or wavelet analyses and these band features are then fed into a classifier. This thesis proposes an end-to-end deep learning automatic design method using optimization techniques without this basic feature engineering. Bayesian optimization is a popular optimization technique for machine learning to optimize model hyperparameters. It is often used in optimization problems to evaluate expensive black box functions. In this thesis, we propose a method to perform whole model hyperparameters and structural optimization by using 1D CNNs and RNNs as basic deep learning models and Bayesian optimization. In this way, this thesis proposes the Deep EEGNet model as a method to discriminate human emotional states from EEG signals. Experimental results proved that the proposed method showed better performance than that of conventional method based on the conventional band power feature method. In conclusion, this thesis has proposed several methodologies for time series pattern recognition problems from the feature engineering-based conventional methods to the end-to-end deep learning design methodologies with only raw time series signals. Experimental results showed that the proposed methodologies can be effectively applied to pattern recognition problems using time series data.์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด ์ธ์‹ ๋ฌธ์ œ๋Š” 4์ฐจ ์‚ฐ์—… ํ˜๋ช…์˜ ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜๊ณผ ํ•จ๊ป˜ ๋งค์šฐ ์ค‘์š”ํ•œ ์ธ๊ณต ์ง€๋Šฅ์˜ ํ•œ ๋ถ„์•ผ๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์ง€๋‚œ ๋ช‡ ๋…„๊ฐ„ ์ด์™€ ๊ด€๋ จ๋œ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์ด๋ฃจ์–ด์ ธ ์™”์œผ๋ฉฐ, ์ตœ๊ทผ์—๋Š” ์‹ฌ์ธต ํ•™์Šต๋ง (deep learning networks) ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ฃผ๋ฅผ ์ด๋ฃจ์–ด ์™”๋‹ค. ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋Š” ๋น„์ •์ƒ, ๋น„์„ ํ˜• ๊ทธ๋ฆฌ๊ณ  ์žก์Œ (nonstationary, nonlinear and noisy) ํŠน์„ฑ์œผ๋กœ ์ธํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด ์ธ์‹ ์ˆ˜ํ–‰์„ ์œ„ํ•ด์„ , ๋ฐ์ดํ„ฐ์˜ ์ฃผ์š”ํ•œ ํŠน์ง•์ ์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ํ™”๋œ ๋ชจ๋ธ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ‘œ์ ์ธ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์ธ ์ƒ์ฒด ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๋ฐฉ๋ฒ• (hand-crafted feature engineering methods)์„ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹ ๊ธฐ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ถ๊ทน์ ์œผ๋กœ๋Š” ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ •์ด ์—†๋Š” ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์‹œ๊ณ„์—ด ์‹ ํ˜ธ๋Š” ์‹œ๊ฐ„ ์ถ• ์ƒ์—์„œ ํฌ๊ฒŒ ์ฃผ๊ธฐ์  ์‹ ํ˜ธ์™€ ๋น„์ฃผ๊ธฐ์  ์‹ ํ˜ธ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๋‘ ์œ ํ˜•์˜ ์‹ ํ˜ธ๋“ค์— ๋Œ€ํ•œ ํŒจํ„ด ์ธ์‹์„ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง์— ๋Œ€ํ•œ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ์„ค๊ณ„๋œ ๋ชจ๋ธ์€ ์‹ ํ˜ธ์˜ ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ์ด์šฉํ•œ Deep ECGNet์ด๋‹ค. ์‹ฌ์žฅ ๊ทผ์œก์˜ ์ „๊ธฐ ์ƒ๋ฆฌํ•™์  ํŒจํ„ด์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ๋ก๋œ ์‹ฌ์ „๋„ (Electrocardiogram, ECG)๋Š” ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ฒ™๋„ (bio marker)๋ฅผ ์ œ๊ณตํ•˜๋Š” ์œ ํšจํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์‹ฌ์ „๋„์˜ ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ (Herat Rate Variability, HRV) ๋งค๊ฐœ๋ณ€์ˆ˜ (parameter)๋Š” ์‹ฌ์žฅ ์งˆํ™˜ ํ™˜์ž์˜ ์ •์‹ ์  ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ ๋ฐ ์‚ฌ๋ง๋ฅ ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ‘œ์ค€ ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ ๋งค๊ฐœ ๋ณ€์ˆ˜๋Š” ์ธก์ • ์ฃผ๊ธฐ๊ฐ€ 5๋ถ„ ์ด์ƒ์œผ๋กœ, ์ธก์ • ์‹œ๊ฐ„์ด ๊ธธ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ฌ์ธต ํ•™์Šต๋ง ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ 10์ดˆ ๊ฐ„๊ฒฉ์˜ ECG ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ, ์ถ”๊ฐ€์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ์˜ ์ถ”์ถœ ๊ณผ์ • ์—†์ด ์ธ๊ฐ„์˜ ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ๋ฅผ ์ธ์‹ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„ ๊ธฐ๋ฒ•์€ ECG ์‹ ํ˜ธ์˜ ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ๋ชจ๋ธ์— ๋ฐ˜์˜ํ•˜์˜€๋Š”๋ฐ, ECG์˜ ์€๋‹‰ ํŠน์ง• ์ถ”์ถœ๊ธฐ๋กœ ์‚ฌ์šฉ๋œ 1D CNNs ๋ฐ RNNs ๋ชจ๋ธ์˜ ์ฃผ์š” ๋งค๊ฐœ ๋ณ€์ˆ˜์— ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ํ•œ ์ฃผ๊ธฐ ์‹ ํ˜ธ์˜ ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ์— ๋”ฐ๋ฅธ ์ฃผ์š” ํŠน์ง•์ ์„ ์ข…๋‹จ ํ•™์Šต๋ง ๋‚ด๋ถ€์ ์œผ๋กœ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ spectrogram ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ํŒจํ„ด ์ธ์‹ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋น„ ์ฃผ๊ธฐ์ ์ด๋ฉฐ ๋น„์ •์ƒ, ๋น„์„ ํ˜• ๊ทธ๋ฆฌ๊ณ  ์žก์Œ ํŠน์„ฑ์„ ์ง€๋‹Œ ์‹ ํ˜ธ์˜ ํŒจํ„ด์ธ์‹์„ ์œ„ํ•œ ์ตœ์  ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์ž๋™ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ๋‡ŒํŒŒ ์‹ ํ˜ธ (Electroencephalogram, EEG)๋Š” ์ค‘์ถ” ์‹ ๊ฒฝ๊ณ„ (CNS)์—์„œ ๋ฐœ์ƒ๋˜์–ด ๋ฌด์˜์‹ ์ƒํƒœ์—์„œ๋„ ๋ณธ์—ฐ์˜ ๊ฐ์ • ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š”๋ฐ, EEG ์‹ ํ˜ธ์˜ ๋‚ฎ์€ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„ (SNR)๋กœ ์ธํ•ด ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•œ ๊ฐ์ • ์ƒํƒœ ํŒ์ •์„ ์œ„ํ•ด์„œ ์ฃผ๋กœ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์ด ๋‡ŒํŒŒ ์—ฐ๊ตฌ์— ์ ์šฉ๋˜์–ด ์™”๋‹ค. ํ†ต์ƒ์ ์œผ๋กœ ๋‡ŒํŒŒ ์‹ ํ˜ธ๋Š” ํ‘ธ๋ฆฌ์— (Fourier) ๋˜๋Š” ์›จ์ด๋ธ”๋ › (wavelet) ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์œผ๋กœ ํ•„ํ„ฐ๋ง ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ถ”์ถœ๋œ ์ฃผํŒŒ์ˆ˜ ํŠน์ง• ๋ฒกํ„ฐ๋Š” ๋ณดํ†ต ์–•์€ ํ•™์Šต ๋ถ„๋ฅ˜๊ธฐ (shallow machine learning classifier)์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด ํŒจํ„ด ์ธ์‹์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ๋ณธ์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ •์ด ์—†๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” (Bayesian optimization) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์ž๋™ ์„ค๊ณ„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ์ดˆ ๋งค๊ฐœ๋ณ€์ˆ˜ (hyperparamters)๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ถ„์•ผ์˜ ๋Œ€ํ‘œ์ ์ธ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ธ๋ฐ, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ํ‰๊ฐ€ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜ (expensive black box function)๋ฅผ ๊ฐ–๊ณ  ์žˆ๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ ํ•ฉํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ๋ณธ์ ์ธ ํ•™์Šต ๋ชจ๋ธ์ธ 1D CNNs ๋ฐ RNNs์˜ ์ „์ฒด ๋ชจ๋ธ์˜ ์ดˆ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐ ๊ตฌ์กฐ์  ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ Deep EEGNet์ด๋ผ๋Š” ์ธ๊ฐ„์˜ ๊ฐ์ •์ƒํƒœ๋ฅผ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์—ฌ๋Ÿฌ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ชจ๋ธ์ด ๊ธฐ์กด์˜ ์ฃผํŒŒ์ˆ˜ ํŠน์ง• ๋ฒกํ„ฐ (band power feature) ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๊ฐ์ • ํŒจํ„ด ์ธ์‹ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹๋ฌธ์ œ๋ฅผ ์—ฌ๋Ÿฌ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ถ€ํ„ฐ, ์ถ”๊ฐ€์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ • ์—†์ด ์›๋ณธ ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๊นŒ์ง€ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์ด ์‹œ๊ณ„์—ด ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹ ๋ฌธ์ œ์— ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Pattern Recognition in Time Series 1 1.2 Major Problems in Conventional Approaches 7 1.3 The Proposed Approach and its Contribution 8 1.4 Thesis Organization 10 Chapter 2 Related Works 12 2.1 Pattern Recognition in Time Series using Conventional Methods 12 2.1.1 Time Domain Features 12 2.1.2 Frequency Domain Features 14 2.1.3 Signal Processing based on Multi-variate Empirical Mode Decomposition (MEMD) 15 2.1.4 Statistical Time Series Model (ARIMA) 18 2.2 Fundamental Deep Learning Algorithms 20 2.2.1 Convolutional Neural Networks (CNNs) 20 2.2.2 Recurrent Neural Networks (RNNs) 22 2.3 Hyper Parameters and Structural Optimization Techniques 24 2.3.1 Grid and Random Search Algorithms 24 2.3.2 Bayesian Optimization 25 2.3.3 Neural Architecture Search 28 2.4 Research Trends related to Time Series Data 29 2.4.1 Generative Model of Raw Audio Waveform 30 Chapter 3 Preliminary Researches: Patten Recognition in Time Series using Various Feature Extraction Methods 31 3.1 Conventional Methods using Time and Frequency Features: Motor Imagery Brain Response Classification 31 3.1.1 Introduction 31 3.1.2 Methods 32 3.1.3 Ensemble Classification Method (Stacking & AdaBoost) 32 3.1.4 Sensitivity Analysis 33 3.1.5 Classification Results 36 3.2 Statistical Feature Extraction Methods: ARIMA Model Based Feature Extraction Methodology 38 3.2.1 Introduction 38 3.2.2 ARIMA Model 38 3.2.3 Signal Processing 39 3.2.4 ARIMA Model Conformance Test 40 3.2.5 Experimental Results 40 3.2.6 Summary 43 3.3 Application on Specific Time Series Data: Human Stress States Recognition using Ultra-Short-Term ECG Spectral Feature 44 3.3.1 Introduction 44 3.3.2 Experiments 45 3.3.3 Classification Methods 49 3.3.4 Experimental Results 49 3.3.5 Summary 56 Chapter 4 Master Framework for Pattern Recognition in Time Series 57 4.1 The Concept of the Proposed Framework for Pattern Recognition in Time Series 57 4.1.1 Optimal Basic Deep Learning Models for the Proposed Framework 57 4.2 Two Categories for Pattern Recognition in Time Series Data 59 4.2.1 The Proposed Deep Learning Framework for Periodic Time Series Signals 59 4.2.2 The Proposed Deep Learning Framework for Non-periodic Time Series Signals 61 4.3 Expanded Models of the Proposed Master Framework for Pattern Recogntion in Time Series 63 Chapter 5 Deep Learning Model Design Methodology for Periodic Signals using Prior Knowledge: Deep ECGNet 65 5.1 Introduction 65 5.2 Materials and Methods 67 5.2.1 Subjects and Data Acquisition 67 5.2.2 Conventional ECG Analysis Methods 72 5.2.3 The Initial Setup of the Deep Learning Architecture 75 5.2.4 The Deep ECGNet 78 5.3 Experimental Results 83 5.4 Summary 98 Chapter 6 Deep Learning Model Design Methodology for Non-periodic Time Series Signals using Optimization Techniques: Deep EEGNet 100 6.1 Introduction 100 6.2 Materials and Methods 104 6.2.1 Subjects and Data Acquisition 104 6.2.2 Conventional EEG Analysis Methods 106 6.2.3 Basic Deep Learning Units and Optimization Technique 108 6.2.4 Optimization for Deep EEGNet 109 6.2.5 Deep EEGNet Architectures using the EEG Channel Grouping Scheme 111 6.3 Experimental Results 113 6.4 Summary 124 Chapter 7 Concluding Remarks 126 7.1 Summary of Thesis and Contributions 126 7.2 Limitations of the Proposed Methods 128 7.3 Suggestions for Future Works 129 Bibliography 131 ์ดˆ ๋ก 139Docto

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    Mapping and monitoring forest remnants : a multiscale analysis of spatio-temporal data

    Get PDF
    KEYWORDS : Landsat, time series, machine learning, semideciduous Atlantic forest, Brazil, wavelet transforms, classification, change detectionForests play a major role in important global matters such as carbon cycle, climate change, and biodiversity. Besides, forests also influence soil and water dynamics with major consequences for ecological relations and decision-making. One basic requirement to quantify and model these processes is the availability of accurate maps of forest cover. Data acquisition and analysis at appropriate scales is the keystone to achieve the mapping accuracy needed for development and reliable use of ecological models.The current and upcoming production of high-resolution data sets plus the ever-increasing time series that have been collected since the seventieth must be effectively explored. Missing values and distortions further complicate the analysis of this data set. Thus, integration and proper analysis is of utmost importance for environmental research. New conceptual models in environmental sciences, like the perception of multiple scales, require the development of effective implementation techniques.This thesis presents new methodologies to map and monitor forests on large, highly fragmented areas with complex land use patterns. The use of temporal information is extensively explored to distinguish natural forests from other land cover types that are spectrally similar. In chapter 4, novel schemes based on multiscale wavelet analysis are introduced, which enabled an effective preprocessing of long time series of Landsat data and improved its applicability on environmental assessment.In chapter 5, the produced time series as well as other information on spectral and spatial characteristics were used to classify forested areas in an experiment relating a number of combinations of attribute features. Feature sets were defined based on expert knowledge and on data mining techniques to be input to traditional and machine learning algorithms for pattern recognition, viz . maximum likelihood, univariate and multivariate decision trees, and neural networks. The results showed that maximum likelihood classification using temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic forest in the study area.In chapter 6, a multiscale approach to digital change detection was developed to deal with multisensor and noisy remotely sensed images. Changes were extracted according to size classes minimising the effects of geometric and radiometric misregistration.Finally, in chapter 7, an automated procedure for GIS updating based on feature extraction, segmentation and classification was developed to monitor the remnants of semideciduos Atlantic forest. The procedure showed significant improvements over post classification comparison and direct multidate classification based on artificial neural networks.</p

    Forecasting with time series imaging

    Full text link
    Feature-based time series representations have attracted substantial attention in a wide range of time series analysis methods. Recently, the use of time series features for forecast model averaging has been an emerging research focus in the forecasting community. Nonetheless, most of the existing approaches depend on the manual choice of an appropriate set of features. Exploiting machine learning methods to extract features from time series automatically becomes crucial in state-of-the-art time series analysis. In this paper, we introduce an automated approach to extract time series features based on time series imaging. We first transform time series into recurrence plots, from which local features can be extracted using computer vision algorithms. The extracted features are used for forecast model averaging. Our experiments show that forecasting based on automatically extracted features, with less human intervention and a more comprehensive view of the raw time series data, yields highly comparable performances with the best methods in the largest forecasting competition dataset (M4) and outperforms the top methods in the Tourism forecasting competition dataset

    Imaging time series for the classification of EMI discharge sources

    Get PDF
    In this work, we aim to classify a wider range of Electromagnetic Interference (EMI) discharge sources collected from new power plant sites across multiple assets. This engenders a more complex and challenging classification task. The study involves an investigation and development of new and improved feature extraction and data dimension reduction algorithms based on image processing techniques. The approach is to exploit the Gramian Angular Field technique to map the measured EMI time signals to an image, from which the significant information is extracted while removing redundancy. The image of each discharge type contains a unique fingerprint. Two feature reduction methods called the Local Binary Pattern (LBP) and the Local Phase Quantisation (LPQ) are then used within the mapped images. This provides feature vectors that can be implemented into a Random Forest (RF) classifier. The performance of a previous and the two new proposed methods, on the new database set, is compared in terms of classification accuracy, precision, recall, and F-measure. Results show that the new methods have a higher performance than the previous one, where LBP features achieve the best outcome
    • โ€ฆ
    corecore