25,110 research outputs found

    DNA expression microarrays may be the wrong tool to identify biological pathways

    Get PDF
    DNA microarray expression signatures are expected to provide new insights into patho- physiological pathways. Numerous variant statistical methods have been described for each step of the signal analysis. We employed five similar statistical tests on the same data set at the level of gene selection. Inter-test agreement for the identification of biological pathways in BioCarta, KEGG and Reactome was calculated using Cohen’s k- score. The identification of specific biological pathways showed only moderate agreement (0.30 < k < 0.79) between the analysis methods used. Pathways identified by microarrays must be treated cautiously as they vary according to the statistical method used

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    An evaluation of DNA-damage response and cell-cycle pathways for breast cancer classification

    Get PDF
    Accurate subtyping or classification of breast cancer is important for ensuring proper treatment of patients and also for understanding the molecular mechanisms driving this disease. While there have been several gene signatures proposed in the literature to classify breast tumours, these signatures show very low overlaps, different classification performance, and not much relevance to the underlying biology of these tumours. Here we evaluate DNA-damage response (DDR) and cell cycle pathways, which are critical pathways implicated in a considerable proportion of breast tumours, for their usefulness and ability in breast tumour subtyping. We think that subtyping breast tumours based on these two pathways could lead to vital insights into molecular mechanisms driving these tumours. Here, we performed a systematic evaluation of DDR and cell-cycle pathways for subtyping of breast tumours into the five known intrinsic subtypes. Homologous Recombination (HR) pathway showed the best performance in subtyping breast tumours, indicating that HR genes are strongly involved in all breast tumours. Comparisons of pathway based signatures and two standard gene signatures supported the use of known pathways for breast tumour subtyping. Further, the evaluation of these standard gene signatures showed that breast tumour subtyping, prognosis and survival estimation are all closely related. Finally, we constructed an all-inclusive super-signature by combining (union of) all genes and performing a stringent feature selection, and found it to be reasonably accurate and robust in classification as well as prognostic value. Adopting DDR and cell cycle pathways for breast tumour subtyping achieved robust and accurate breast tumour subtyping, and constructing a super-signature which contains feature selected mix of genes from these molecular pathways as well as clinical aspects is valuable in clinical practice.Comment: 28 pages, 7 figures, 6 table

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems

    Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a Clinical Diagnosis of Chronic Lung Allograft Dysfunction.

    Get PDF
    BackgroundChronic Lung Allograft Dysfunction (CLAD) is the main limitation to long-term survival after lung transplantation. Although CLAD is usually not responsive to treatment, earlier identification may improve treatment prospects.MethodsIn a nested case control study, 1-year post transplant surveillance bronchoalveolar lavage (BAL) fluid samples were obtained from incipient CLAD (n = 9) and CLAD free (n = 8) lung transplant recipients. Incipient CLAD cases were diagnosed with CLAD within 2 years, while controls were free from CLAD for at least 4 years following bronchoscopy. Transcription profiles in the BAL cell pellets were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression analysis, based on an absolute fold change (incipient CLAD vs no CLAD) >2.0 and an unadjusted p-value ≤0.05, generated a candidate list containing 55 differentially expressed probe sets (51 up-regulated, 4 down-regulated).ResultsThe cell pellets in incipient CLAD cases were skewed toward immune response pathways, dominated by genes related to recruitment, retention, activation and proliferation of cytotoxic lymphocytes (CD8+ T-cells and natural killer cells). Both hierarchical clustering and a supervised machine learning tool were able to correctly categorize most samples (82.3% and 94.1% respectively) into incipient CLAD and CLAD-free categories.ConclusionsThese findings suggest that a pathobiology, similar to AR, precedes a clinical diagnosis of CLAD. A larger prospective investigation of the BAL cell pellet transcriptome as a biomarker for CLAD risk stratification is warranted

    A machine learning pipeline for discriminant pathways identification

    Full text link
    Motivation: Identifying the molecular pathways more prone to disruption during a pathological process is a key task in network medicine and, more in general, in systems biology. Results: In this work we propose a pipeline that couples a machine learning solution for molecular profiling with a recent network comparison method. The pipeline can identify changes occurring between specific sub-modules of networks built in a case-control biomarker study, discriminating key groups of genes whose interactions are modified by an underlying condition. The proposal is independent from the classification algorithm used. Three applications on genomewide data are presented regarding children susceptibility to air pollution and two neurodegenerative diseases: Parkinson's and Alzheimer's. Availability: Details about the software used for the experiments discussed in this paper are provided in the Appendix
    corecore