2,231 research outputs found

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Full text link
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors

    Get PDF
    Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths worldwide. Recently, blue light (BL) cystoscopy-based photodynamic diagnosis was introduced as a unique technology to enhance the detection of bladder cancer, particularly for the detection of flat and small lesions. Here, we aim to demonstrate a BL image-based artificial intelligence (AI) diagnostic platform using 216 BL images, that were acquired in four different urological departments and pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, four pre-trained convolution neural networks were utilized to predict image malignancy, invasiveness, and grading. The results indicated that the classification sensitivity and specificity of malignant lesions are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of AI based classification of BL images allowing for better treatment decisions and potentially higher detection rates
    corecore