48,514 research outputs found

    The Parameterized Complexity of Centrality Improvement in Networks

    Full text link
    The centrality of a vertex v in a network intuitively captures how important v is for communication in the network. The task of improving the centrality of a vertex has many applications, as a higher centrality often implies a larger impact on the network or less transportation or administration cost. In this work we study the parameterized complexity of the NP-complete problems Closeness Improvement and Betweenness Improvement in which we ask to improve a given vertex' closeness or betweenness centrality by a given amount through adding a given number of edges to the network. Herein, the closeness of a vertex v sums the multiplicative inverses of distances of other vertices to v and the betweenness sums for each pair of vertices the fraction of shortest paths going through v. Unfortunately, for the natural parameter "number of edges to add" we obtain hardness results, even in rather restricted cases. On the positive side, we also give an island of tractability for the parameter measuring the vertex deletion distance to cluster graphs

    Wrapping layered graphs

    Get PDF
    We present additions to the widely-used layout method for directed acyclic graphs of Sugiyama et al. [16] that allow to better utilize a prescribed drawing area. The method itself partitions the graph's nodes into layers. When drawing from top to bottom, the number of layers directly impacts the height of a resulting drawing and is bound from below by the graph's longest path. As a consequence, the drawings of certain graphs are significantly taller than wide, making it hard to properly display them on a medium such as a computer screen without scaling the graph's elements down to illegibility. We address this with the Wrapping Layered Graphs Problem (WLGP), which seeks for cut indices that split a given layering into chunks that are drawn side-by-side with a preferably small number of edges wrapping backwards. Our experience and a quantitative evaluation indicate that the proposed wrapping allows an improved presentation of narrow graphs, which occur frequently in practice and of which the internal compiler representation SCG is one example

    Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance

    Full text link
    We present two on-line algorithms for maintaining a topological order of a directed nn-vertex acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm handles mm arc additions in O(m3/2)O(m^{3/2}) time. For sparse graphs (m/n=O(1)m/n = O(1)), this bound improves the best previous bound by a logarithmic factor, and is tight to within a constant factor among algorithms satisfying a natural {\em locality} property. Our second algorithm handles an arbitrary sequence of arc additions in O(n5/2)O(n^{5/2}) time. For sufficiently dense graphs, this bound improves the best previous bound by a polynomial factor. Our bound may be far from tight: we show that the algorithm can take Ω(n222lgn)\Omega(n^2 2^{\sqrt{2\lg n}}) time by relating its performance to a generalization of the kk-levels problem of combinatorial geometry. A completely different algorithm running in Θ(n2logn)\Theta(n^2 \log n) time was given recently by Bender, Fineman, and Gilbert. We extend both of our algorithms to the maintenance of strong components, without affecting the asymptotic time bounds.Comment: 31 page
    corecore