353 research outputs found

    Traffic Sensitive and Traffic Load Aware Path Selection Algorithm For MMR WIMAX Networks

    Get PDF
    The recent developments in the broadband wireless access (BWA) communication systems have introduced several major changes to the existing systems. Legacy IEEE 802.16j is one such amendment to the existing IEEE 802.16 WiMAX family. The key modification introduced by 802.16j system is the concept of relay station (RS), which may be used to enhance the system coverage or to make system throughput optimal. The end terminals, subscriber stations (SS) are unchanged in the standard. The overall change pertinent to the system has raised many unresolved issues related to RS and multi-hop relay base station (MR-BS). The selection of path from a SS to MR-BS via a RS is also one of the issues, need to be addressed. The path selection of a SS in both uplink and downlink directions is left open in the standard. It is very significant to satisfy the traffics of stringent quality of service (QoS) requirements and to appropriately manage the resources of a cell under different circumstances. This paper proposes a path selection algorithm to achieve the aforementioned qualities in the network. The path selection metrics include traffic load of the transparent relay station and traffic sensitivity factor of the SS. An extensive simulation work discusses the performance evaluation of the proposed work using QualNet simulator

    IEEE 802.16J Relay- based wireless access networks: An overview.

    Get PDF
    Multihop wireless systems have the potential to offer improved coverage and capacity over single-hop radio access systems. Standards development organizations are considering how to incorporate such techniques into new standards. One such initiative is the IEEE 802.16j standardization activity, adding relay capabilities to IEEE 802.16 systems. This article provides an overview of this relay-based technology, focusing on some of the most pertinent aspects. In particular, the different modes of operation (transparent and non-transparent), framing structures, and network entry procedures are described. Some consideration of the issues in designing such systems is then given, which highlights when different features within the standard are most appropriate. As these systems are very new, many open issues remain to be resolved.European Community´s Seventh Framework ProgramPublicad

    Connectivity in mobile multihop relay network

    Get PDF
    Mobile Multihop Relay (MMR) network is an attractive and low-cost solution for expanding service coverage and enhancing throughput of the conventional single hop network. However, mobility of Mobile Station (MS) in MMR network might lead to performance degradation in terms of Quality of Service (QoS). Selecting an appropriate Relay Station (RS) that can support data transmission for high mobility MS to enhance QoS is one of the challenges in MMR network. The main goal of the work is to develop and enhance relay selection mechanisms that can assure continuous connectivity while ensuring QoS in MMR network using NCTUns simulation tools. The approach is to develop and enhance a relay selection for MS with continuous connectivity in non-transparent relay. In this approach, the standard network entry procedure is modified to allow continuous connectivity with reduced signaling messages whenever MS joins RS that is out of Multihop Relay Base Station (MRBS) coverage and the relay selection is based on Signal to Noise Ratio (SNR). The QoS performances of the proposed relay selections are in terms of throughput and average end-to-end (ETE) delay. The findings for the proposed relay selection in non-transparent relay shows that the throughput degradation between low mobility MS (30m/s) and high mobility MS (50m/s) is only about 2.0%. The proposed relay selection mechanisms can be applied in any high mobility multi-tier cellular network

    Relay selection in mobile multihop relay network

    Get PDF
    Mobile Multihop Relay (MMR) network is an attractive and low-cost solution for expanding service coverage and enhancing throughput of the conventional single hop network. However, mobility of Mobile Station (MS) in MMR network might lead to performance degradation in terms of Quality of Service (QoS). Selecting an appropriate Relay Station (RS) that can support data transmission for high mobility MS to enhance QoS is one of the challenges in MMR network. The main goal of the work is to develop and enhance relay selection mechanisms that can assure continuous connectivity while ensuring QoS in MMR network using NCTUns simulation tools. The approach is to develop and enhance relay selection that allows cooperative data transmission in transparent relay that guarantees continuous connectivity. The proposed relay selection defined as Co-ReSL depends on weightage of SNR, α and weightage of Link Expiration Time (LET), β. The QoS performances of the proposed relay selections are in terms of throughput and average end-to-end (ETE) delay. The findings for Co-ReSL shows that at heavy traffic load, throughput increases up to 5.7% and average ETE delay reduces by 7.5% compared to Movement Aware Greedy Forwarding (MAGF) due to cooperative data transmission in selective links. The proposed relay selection mechanisms can be applied in any high mobility multi-tier cellular network

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed

    Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks

    Get PDF
    IEEE 802.16 standard is created to compete with cable access networks. In the beginning end users are immobile and have a line of sight with base station, now it moved to mobile non line of sight (NLOS) with the new standard IEEE 802.16e and IEEE 802.16j. The new IEEE 802.16j standard which is an amendment to IEEE 802.16e is mobile multi hop relay (MMR) specification for wireless networks. This paper discusses relay modes, relay transmission schemes and relay pairing schemes of IEEE 802.16j. Relay technologies such as transparent relay modes, non transparent relay mode, relay pairing schemes such as centralized relay pairing schemes, distributed relay pairing scheme, characterises of relay based networks such as throughput enhancement, capacity increase, cost reduction , relay techniques such as time domain frequency domain relay techniques and relay placement are also discussed in this paper. The paper also discusses about integration of IEEE 802.16j with IEEE 802.11. Keywords: IEEE 802.16j, Relay pairing schemes, relay techniques, Relay modes, WIMAX, NCTUns, et

    Simulation of Relay modes in IEEE 802.16j Mobile Multi-hop Relay (MMR) WIMAX Networks

    Get PDF
    Two different relay modes are defined in IEEE 802.16j WIMAX standard: transparent mode and non-transparent mode. The non transparent mode is used to extend the coverage area of base stations, where low cost relay station of equal capacity as that of base station is placed at suitable position. Time taken to accept mobile stations and Bandwidth allocation are main problems in non transparent mode. In this we have studied the IEEE 802.16j standard multi hop relay WIMAX networks. We have used relay stations to extend the coverage of base stations. We have also analyzed the throughput between mobile stations with in the coverage area and outside coverage area of base stations. We have simulated the IEEE 802.16j transparent and non transparent mode multi hop WIMAX relay networks using NCTUns Too

    이동통신 네트워크에서의 QoS 패킷 스케줄러 설계 및 고정 릴레이 관련 주파수 재사용 관리 기법 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 박세웅.The main interest of this paper is to understand a basic approach to provide more efficient method to allocate radio resources in the mobile communication systems, especially in which radio resources could be allocated by both frequency and time division multiple access. So, we consider OFDMA system and the ideas described in this paper could be easily applied to the current and next generation mobile communication systems. This paper studies two basic research themesa QoS packet scheduler design and fixed relay resource management policies based on frequency reuse in mobile networks. This paper considers novel scheduler structures that are executable in the environments of multiple traffic classes and multiple frequency channels. To design a scheduler structure for multiple traffic classes, we first propose a scheduler selection rule that uses the priority of traffic class and the urgency level of each packet. Then we relax the barrier of traffic class priority when a high priority packet has some room in waiting time. This gives us a chance to exploit multiuser diversity, thereby giving more flexibility in scheduling. Our considered scheduler can achieve higher throughput compared to the simple extension of conventional modified largest weighted delay first (MLWDF) scheduler while maintaining the delay performance for QoS class traffic. We also design a scheduler structure for multiple frequency channels that chooses a good channel for each user whenever possible to exploit frequency diversity. The simulation results show that our proposed scheduler increases the total system throughput by up to 50% without degrading the delay performance. This paper also introduces radio resource management schemes based on frequency reuse for fixed relay stations in mobile cellular networks. Mobile stations in the cell boundary experience poor spectral efficiency due to the path loss and interference from adjacent cells. Therefore, satisfying QoS requirements of each MS at the cell boundary has been an important issue. To resolve this spectral efficiency problem at the cell boundary, deploying fixed relay stations has been actively considered. In this paper, we consider radio resource management policies based on frequency reuse for fixed relays that include path selection rules, frequency reuse pattern matching, and frame transmission pattern matching among cells. We evaluate performance of each policy by varying parameter values such as relay stations position and frequency reuse factor. Through Monte Carlo simulations and mathematical analysis, we suggest some optimal parameter values for each policy and discuss some implementation issues that need to be considered in practical deployment of relay stations. We also surveyed further works that many researchers have been studied to tackle the similar problems of QoS scheduling and resource management for relay with our proposed work. We expect that there would be more future works by priority-based approach and energy-aware approach for QoS scheduling. Also current trends such as the rising interest in IoT system, discussion of densification of cells and D2D communications in 5G systems make us expect that the researches in these topics related with relays would be popular in the future. We also think that there are many interesting problems regarding QoS support and resource management still waiting to be tackled, especially combined with recent key topics in mobile communication systems such as 5G standardization, AI and NFV/SDN.Chapter 1 Introduction 1 1.1 QoS Packet Scheduler 4 1.2 Fixed Relay Frequency Reuse Policies 6 Chapter 2 Scheduler Design for Multiple Traffic Classes in OFDMA Networks 10 2.1 Proposed Schedulers 10 2.1.1 Scheduler Structures 12 2.1.2 MLWDF scheduler for Multiple Traffic Classes 13 2.1.3 Joint Scheduler 13 2.2 System Model 18 2.3 Performance Evaluation 19 2.3.1 Schedulers for Multiple Traffic Classes 20 2.3.2 Impact of Scheduler Selection Rule 25 2.3.3 Frame Based Schedulers 27 2.3.4 Impact of Partial Feedback 30 2.3.5 Adaptive Threshold Version Schedulers 33 2.4 Conclusion 36 Chapter 3 Frequency Reuse Policies for Fixed Relays in Cellular Networks 40 3.1 System Model 40 3.1.1 Frame Transmission and Frequency Reuse Patterns among RSs 42 3.1.2 Positioning of RSs and Channel Capacity 44 3.1.3 Area Spectral Efficiency 45 3.2 Radio Resource Management Policies Based on Frequency Reuse 46 3.2.1 Path Selection Rule 46 3.2.2 Frequency Reuse and Frame Transmission Pattern Matchings among Cells 52 3.3 Monte Carlo Simulation and Results 53 3.4 Consideration of Practical Issues 80 3.5 Conclusion 81 Chapter 4 Surveys of Further Works 83 4.1 Further Works on QoS Schedulers 83 4.1.1 WiMAX Schedulers 85 4.1.2 LTE Schedulers 92 4.2 Further Works on Radio Resource Management in Relay Systems 98 4.3 Future Challenges 100 Chapter 5 Conclusion 104 Bibliography 107 초록 127Docto
    corecore