2,041 research outputs found

    Nonlinear model predictive control-based guidance law for path following of unmanned surface vehicles

    Full text link
    This work proposes a nonlinear model predictive control-based guidance strategy for unmanned surface vehicles, focused on path following. The application of this strategy, in addition to overcome drawbacks of previous line-of-sight-based guidance laws, intends to enable the application of predictive strategies also to the low-level control, responsible for tracking the references provided by the guidance strategy. The stability and robustness of the proposed strategy are theoretically discussed. Furthermore, given the non-negligible computational cost of such nonlinear predictive guidance strategy, a practical nonlinear model predictive control strategy is also applied in order to reduce the computational cost to a great extent. The effectiveness and advantages of both proposed strategies over other nonlinear guidance laws are illustrated through a complete set of simulations.Comment: 21 pages, 15 figures. Postprint of the final published wor

    Nonlinear Trajectory Tracking Control for Marine Vessels with Additive Uncertainties

    Get PDF
    The paper presents a nonlinear control law for a marine vessel to track a reference trajectory. In the wake of theresults obtained in [19], an integrative approach is incorporated in the linear algebra methodology in order toreduce the effect of the uncertainty in the tracking error. This new approach does not increase the complexityof the design methodology. In addition, the zero convergence of tracking error under polynomial uncertaintiesis demonstrated. Simulation results under environmental disturbance and model mismatches are presentedand discussed.Fil: Serrano, Mario Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; ArgentinaFil: Godoy Bordes, Sebastian Alejandro. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentin

    RBF-based supervisor path following control for ASV with time-varying ocean disturbance

    Get PDF
    1028-1036A robust model-free path following controller is developed for autonomous surface vehicle (ASV) with time-varying ocean disturbance. First, the geometrical relationship between ASV and virtual tracking point on the reference path is investigated. The differentiations of tracking errors are described with the relative motion method, which greatly simplified the direct differential of tracking errors. Furthermore, the control law for the desired angular velocity of the vehicle and virtual tracking point are built based on the Lyapunov theory. Second, the traditional proportional-integral-derivative (PID) controller is developed based on the desired velocities and state feedback. The radial basic function (RBF) neural network taking as inputs the desired surge velocity and yaw angular velocity is developed as the supervisor to PID controller. Besides, RBF controller tunes weights according to the output errors between the PID controller and supervisor controller, based on the gradient descent method. Hence, PID controller and RBF supervisor controller act as feedback and feed forward control of the system, respectively. Finally, comparative path following simulation for straight path and sine path illustrate the performance of the proposed supervisor control system. The PID controller term reports loss of control even in the unknown disturbance

    DESIGN CONTROL OF SURFACE MARINE VEHICLE USING DISTURBANCE COMPENSATING MODEL PREDICTIVE CONTROL (DC-MPC)

    Get PDF
    This research studied ship motion control by considering four degrees of freedom (DoF): yaw, roll, sway, and surge in which comprehensive mathematical modeling forming a nonlinear differential equation. Furthermore, this research also investigated solutions for fundamental yet challenging steering problems of ship maneuvering using advanced control method: Disturbance Compensating Model Predictive Control (DC-MPC) method, which based on Model Predictive Control (MPC). The DC-MPC allows optimizing a compensated control then consider sea waves as the environmental disturbances. Those sea waves influence the control and also becomes one of the constraints for the system. The simulation compared the varying condition of Horizon Prediction (Np) and another method showing that the DC-MPC can manage well the given disturbances while maneuvering in certain Horizon Prediction. The results revealed that the ship is stable and follows the desired trajector

    An environmental disturbance observer framework for autonomous surface vessels

    Get PDF
    This paper proposes a robust disturbance observer framework for maritime autonomous surface vessels considering model and measurement uncertainties. The core contribution lies in a nonlinear disturbance observer, reconstructing the forces on a vessel impacted by the environment. For this purpose, mappings are found leading to synchronized global exponentially stable error dynamics. With the stability theory of Lyapunov, it is proven that the error converges exponentially into a ball, even if the disturbances are highly dynamic. Since measurements are affected by noise and physical models can be erroneous, an unscented Kalman filter (UKF) is used to generate more reliable state estimations. In addition, a noise estimator is introduced, which approximates the noise strength. Depending on the severity of the measurement noise, the observed disturbances are filtered through a cascaded structure consisting of a weighted moving average (WMA) filter, a UKF, and the proposed disturbance observer. To investigate the capability of this observer framework, the environmental disturbances are simulated dynamically under consideration of different model and measurement uncertainties. It can be seen that the observer framework can approximate dynamical forces on a vessel impacted by the environment despite using a low measurement sampling rate, an erroneous model, and noisy measurements.publishedVersio

    Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode

    Get PDF
    summary:To tackle the underactuated surface vessel (USV) trajectory tracking challenge with input delays and composite disturbances, an integral time-delay sliding mode controller based on backstepping is discussed. First, the law of virtual velocity control is established by coordinate transformation and the position error is caused to converge utilizing the performance function. At the same time, based on the estimation of velocity vector by the high-gain observer (HGO), radial basis function (RBF) neural network is applied to compensate for both the uncertainty of model parameters and external disturbances. The longitudinal and heading control laws are presented in combination with the integral time-delay sliding mode control. Then, on the basis of Lyapunov - Krasovskii functional and stability proof, virtual velocity error is guaranteed to converge to 0 in finite time. Finally, the outcomes of the numerical simulation demonstrate the reliability and efficiency of the proposed approach
    corecore