5 research outputs found

    Efficient Modelling Methodology for Reconfigurable Underwater Robots

    Get PDF
    This paper considers the challenge of applying reconfigurable robots in an underwater environment. The main result presented is the development of a model for a system comprised of N, possibly heterogeneous, robots dynamically connected to each other and moving with 6 Degrees of Freedom (DOF). This paper presents an application of the Udwadia-Kalaba Equation for modelling the Reconfigurable Underwater Robots. The constraints developed to enforce the rigid connection between robots in the system is derived through restrictions on relative distances and orientations. To avoid singularities in the orientation and, thereby, allow the robots to undertake any relative configuration the attitude is represented in Euler parameter

    Underactuated leader-follower synchronisation for multi-agent systems with rejection of unknown disturbances

    Get PDF
    Author preprintIn this paper leader-follower synchronization is considered for underactuated followers in an inhomogeneous multi-agent system. The goal is to synchronise the motion of a leader and an underactuated follower. Measurements of the leader's position and velocity are available, while the dynamics and trajectory of the leader is unknown. The leader velocities are used as input for a constant bearing guidance algorithm to assure that the follower synchronises its motion to the leader. It is also shown that the proposed leader-follower scheme can be applied to multi-agent systems that are subjected to unknown environmental disturbances. Furthermore, the trajectory of the leader does not need to be known. The stability properties of the complete control scheme and the unactuated internal dynamics are analysed using nonlinear cascaded system theory. Simulation results are presented to validate the proposed control strategy.Preprint version. © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    3D Coordinated Path Following with Disturbance Rejection for Formations of Under-actuated Agents

    Get PDF
    In this paper coordinated path following for formations of under-actuated agents in three dimensional space is considered. The agents are controlled to follow a straight-line path whilst being affected by an unknown environmental disturbance. The problem is solved using a twofold approach. In particular, the agents are controlled to the desired path using a guidance law that rejects an unknown, but constant, disturbance. Simultaneously each agent utilises a decentralised nonlinear coordination law to achieve the desired formation. The closed-loop system of path-following and coordination dynamics is analysed using theory for feedback-interconnected systems. In particular, a technique from [1] is used that allows us to analyse a feedback-interconnected systems as a cascaded system. The origin of the closed-loop error dynamics is shown to be globally asymptotically stable. A case study with simulation results is presented to validate the control strategy.(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Path following for formations of underactuated marine vessels under influence of constant ocean currents

    No full text
    corecore