10,091 research outputs found

    Bipartite, Size, and Online Ramsey Numbers of Some Cycles and Paths

    Get PDF
    The basic premise of Ramsey Theory states that in a sufficiently large system, complete disorder is impossible. One instance from the world of graph theory says that given two fixed graphs F and H, there exists a finitely large graph G such that any red/blue edge coloring of the edges of G will produce a red copy of F or a blue copy of H. Much research has been conducted in recent decades on quantifying exactly how large G must be if we consider different classes of graphs for F and H. In this thesis, we explore several Ramsey- type problems with a particular focus on paths and cycles. We first examine the bipartite size Ramsey number of a path on n vertices, bˆr(Pn), and give an upper bound using a random graph construction motivated by prior upper bound improvements in similar problems. Next, we consider the size Ramsey number Rˆ (C, Pn) and provide a significant improvement to the upper bound using a very structured graph, the cube of a path, as opposed to a random construction. We also prove a small improvement to the lower bound and show that the r-colored version of this problem is asymptotically linear in rn. Lastly, we give an upper bound for the online Ramsey number R˜ (C, Pn)

    problems in graph theory and probability

    Get PDF
    This dissertation is a study of some properties of graphs, based on four journal papers (published, submitted, or in preparation). In the first part, a random graph model associated to scale-free networks is studied. In particular, preferential attachment schemes where the selection mechanism is time-dependent are considered, and an infinite dimensional large deviations bound for the sample path evolution of the empirical degree distribution is found. In the latter part of this dissertation, (edge) colorings of graphs in Ramsey and anti-Ramsey theories are studied. For two graphs, G, and H, an edge-coloring of a complete graph is (G;H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow (totally muticolored) subgraph isomorphic to H in this coloring. Some properties of the set of number of colors used by some (G;H)-colorings are discussed. Then the maximum element in this set when H is a cycle is studied

    Finding combinatorial structures

    Get PDF
    In this thesis we answer questions in two related areas of combinatorics: Ramsey theory and asymptotic enumeration. In Ramsey theory we introduce a new method for finding desired structures. We find a new upper bound on the Ramsey number of a path against a kth power of a path. Using our new method and this result we obtain a new upper bound on the Ramsey number of the kth power of a long cycle. As a corollary we show that, while graphs on n vertices with maximum degree k may in general have Ramsey numbers as large as ckn, if the stronger restriction that the bandwidth should be at most k is given, then the Ramsey numbers are bounded by the much smaller value. We go on to attack an old conjecture of Lehel: by using our new method we can improve on a result of Luczak, Rodl and Szemeredi [60]. Our new method replaces their use of the Regularity Lemma, and allows us to prove that for any n > 218000, whenever the edges of the complete graph on n vertices are two-coloured there exist disjoint monochromatic cycles covering all n vertices. In asymptotic enumeration we examine first the class of bipartite graphs with some forbidden induced subgraph H. We obtain some results for every H, with special focus on the cases where the growth speed of the class is factorial, and make some comments on a connection to clique-width. We then move on to a detailed discussion of 2-SAT functions. We find the correct asymptotic formula for the number of 2-SAT functions on n variables (an improvement on a result of Bollob´as, Brightwell and Leader [13], who found the dominant term in the exponent), the first error term for this formula, and some bounds on smaller error terms. Finally we obtain various expected values in the uniform model of random 2-SAT functions

    Extremal graph colouring and tiling problems

    Get PDF
    In this thesis, we study a variety of different extremal graph colouring and tiling problems in finite and infinite graphs. Confirming a conjecture of Gyárfás, we show that for all k, r ∈ N there is a constant C > 0 such that the vertices of every r-edge-coloured complete k-uniform hypergraph can be partitioned into a collection of at most C monochromatic tight cycles. We shall say that the family of tight cycles has finite r-colour tiling number. We further prove that, for all natural numbers k, p and r, the family of p-th powers of k-uniform tight cycles has finite r-colour tiling number. The case where k = 2 settles a problem of Elekes, Soukup, Soukup and Szentmiklóssy. We then show that for all natural numbers ∆, r, every family F = {F1, F2, . . .} of graphs with v (Fn) = n and ∆(Fn) ≤ ∆ for every n ∈ N has finite r-colour tiling number. This makes progress on a conjecture of Grinshpun and Sárközy. We study Ramsey problems for infinite graphs and prove that in every 2-edge- colouring of KN, the countably infinite complete graph, there exists a monochromatic infinite path P such that V (P) has upper density at least (12 + √8)/17 ≈ 0.87226 and further show that this is best possible. This settles a problem of Erdős and Galvin. We study similar problems for many other graphs including trees and graphs of bounded degree or degeneracy and prove analogues of many results concerning graphs with linear Ramsey number in finite Ramsey theory. We also study a different sort of tiling problem which combines classical problems from extremal and probabilistic graph theory, the Corrádi–Hajnal theorem and (a special case of) the Johansson–Kahn–Vu theorem. We prove that there is some constant C > 0 such that the following is true for every n ∈ 3N and every p ≥ Cn−2/3 (log n)1/3. If G is a graph on n vertices with minimum degree at least 2n/3, then Gp (the random subgraph of G obtained by keeping every edge independently with probability p) contains a triangle tiling with high probability
    • …
    corecore