23,703 research outputs found

    Path Planning With Adaptive Dimensionality

    Get PDF
    Path planning quickly becomes computationally hard as the dimensionality of the state-space increases. In this paper, we present a planning algorithm intended to speed up path planning for high-dimensional state-spaces such as robotic arms. The idea behind this work is that while planning in a highdimensional state-space is often necessary to ensure the feasibility of the resulting path, large portions of the path have a lower-dimensional structure. Based on this observation, our algorithm iteratively constructs a state-space of an adaptive dimensionality–a state-space that is high-dimensional only where the higher dimensionality is absolutely necessary for finding a feasible path. This often reduces drastically the size of the state-space, and as a result, the planning time and memory requirements. Analytically, we show that our method is complete and is guaranteed to find a solution if one exists, within a specified suboptimality bound. Experimentally, we apply the approach to 3D vehicle navigation (x, y, heading), and to a 7 DOF robotic arm on the Willow Garage’s PR2 robot. The results from our experiments suggest that our method can be substantially faster than some of the state-ofthe-art planning algorithms optimized for those tasks

    Planning Hybrid Driving-Stepping Locomotion on Multiple Levels of Abstraction

    Full text link
    Navigating in search and rescue environments is challenging, since a variety of terrains has to be considered. Hybrid driving-stepping locomotion, as provided by our robot Momaro, is a promising approach. Similar to other locomotion methods, it incorporates many degrees of freedom---offering high flexibility but making planning computationally expensive for larger environments. We propose a navigation planning method, which unifies different levels of representation in a single planner. In the vicinity of the robot, it provides plans with a fine resolution and a high robot state dimensionality. With increasing distance from the robot, plans become coarser and the robot state dimensionality decreases. We compensate this loss of information by enriching coarser representations with additional semantics. Experiments show that the proposed planner provides plans for large, challenging scenarios in feasible time.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 201
    corecore