
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

2011

Path Planning With Adaptive Dimensionality
Kalin Gochev
University of Pennsylvania

Benjamin Cohen
University of Pennsylvania

Jonathan Butzke
University of Pennsylvania

Alla Safonova
University of Pennsylvania, alla@cis.upenn.edu

Maxim Likhachev
University of Pennsylvania, maximl@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Engineering Commons, and the Graphics and Human Computer Interfaces
Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/175
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Gochev, K., Cohen, B., Butzke, J., Safonova, A., & Likhachev, M. (2011). Path Planning With Adaptive Dimensionality. Proceedings,
The Fourth International Symposium on Combinatorial Search (SoCS-2011), Retrieved from http://repository.upenn.edu/hms/175

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/175?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms/175
mailto:libraryrepository@pobox.upenn.edu

Path Planning With Adaptive Dimensionality

Abstract
Path planning quickly becomes computationally hard as the dimensionality of the state-space increases. In this
paper, we present a planning algorithm intended to speed up path planning for high-dimensional state-spaces
such as robotic arms. The idea behind this work is that while planning in a highdimensional state-space is
often necessary to ensure the feasibility of the resulting path, large portions of the path have a lower-
dimensional structure. Based on this observation, our algorithm iteratively constructs a state-space of an
adaptive dimensionality–a state-space that is high-dimensional only where the higher dimensionality is
absolutely necessary for finding a feasible path. This often reduces drastically the size of the state-space, and as
a result, the planning time and memory requirements. Analytically, we show that our method is complete and
is guaranteed to find a solution if one exists, within a specified suboptimality bound. Experimentally, we apply
the approach to 3D vehicle navigation (x, y, heading), and to a 7 DOF robotic arm on the Willow Garage’s
PR2 robot. The results from our experiments suggest that our method can be substantially faster than some of
the state-ofthe-art planning algorithms optimized for those tasks.

Keywords
motion and path planning, planning algorithms, heuristic search

Disciplines
Computer Sciences | Engineering | Graphics and Human Computer Interfaces

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/hms/175

http://repository.upenn.edu/hms/175?utm_source=repository.upenn.edu%2Fhms%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages

Path Planning with Adaptive Dimensionality

Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safonova
University of Pennsylvania

kgochev, bcohen, jbutzke, alla @seas.upenn.edu

Maxim Likhachev
Carnegie Mellon Univ.
maxim@cs.cmu.edu

Abstract

Path planning quickly becomes computationally hard as the
dimensionality of the state-space increases. In this paper, we
present a planning algorithm intended to speed up path plan-
ning for high-dimensional state-spaces such as robotic arms.
The idea behind this work is that while planning in a high-
dimensional state-space is often necessary to ensure the fea-
sibility of the resulting path, large portions of the path have a
lower-dimensional structure. Based on this observation, our
algorithm iteratively constructs a state-space of an adaptive
dimensionality–a state-space that is high-dimensional only
where the higher dimensionality is absolutely necessary for
finding a feasible path. This often reduces drastically the size
of the state-space, and as a result, the planning time and mem-
ory requirements. Analytically, we show that our method
is complete and is guaranteed to find a solution if one ex-
ists, within a specified suboptimality bound. Experimentally,
we apply the approach to 3D vehicle navigation (x, y, head-
ing), and to a 7 DOF robotic arm on the Willow Garage’s
PR2 robot. The results from our experiments suggest that our
method can be substantially faster than some of the state-of-
the-art planning algorithms optimized for those tasks.
Keywords: Motion and Path Planning, Planning Algorithms,
Heuristic Search

1 Introduction

Path planning is frequently done in high-dimensional state-
spaces in order to represent a high degree of freedom robotic
system or to account for various kinodynamic constraints of
the system. Unfortunately, the high dimensionality of the
state-space often leads to a dramatic increase in the time and
memory required to find a path. However, while planning
in a high-dimensional state-space is often necessary, large
portions of the computed paths are still low-dimensional.
For example, a 3D (x, y, θ) path for a non-holonomic robot
typically contains large portions that are straight-line seg-
ments and do not therefore require 3-dimensional planning.
Sections of the path that include turning do require full-
dimensional planning. Similarly, planning for manipulation

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This research was sponsored by ONR grant N00014-09-1-
1052 and the Army Research Laboratory Cooperative Agreement
Number W911NF-10-2-0016.

can often be reduced to 3D planning for an end-effector
and then just running an inverse kinematics solver to find
the full-dimensional path that corresponds to the found end-
effector path. At the same time, there are relatively infre-
quent situations where the planner does need to consider the
full configuration of the arm in trying to figure out the feasi-
bility of the end-effector path.

In this paper, we present an algorithm that exploits this
observation. It iteratively constructs a state-space that is
low-dimensional everywhere except for the areas where
low-dimensional planning fails. This results in substantial
speedups and lower memory requirements. On the theoreti-
cal side, we show that the method is complete with respect
to the state-space discretization and can provably guarantee
to find a solution, if one exists, within a given suboptimal-
ity bound. On the experimental side, we apply our algo-
rithm to a 3D (x, y, θ) vehicle navigation problem, planning
adaptively in 3D/2D, and also to a 7 DOF robot arm on the
Willow Garage’s PR2 robot, planning adaptively in 7D/3D,
where 3D corresponds to 3D (x, y, z) planning for the end
effector. In both scenarios, our experiments suggest that our
approach can be substantially faster than other methods op-
timized for these tasks.

2 Related Work

In order to improve planning times, researchers have used
a variety of techniques to avoid performing global plan-
ning in high-dimensions. Many path planners implement a
two layer planning scheme where a low-dimensional global
planner provides input to a higher-dimensional local planner.
Since these local planners can operate on a small subset of
the entire environment, they can afford to include more di-
mensions while still meeting planning time constraints. The
local planners have been implemented using reactive ob-
stacle avoidance planners (Thrun and others 1998) and dy-
namic windows (Philippsen and Siegwart 2003; Brock and
Khatib 1999) to produce feasible paths from an underlying
low-dimensional global planner. However these techniques
can result in highly suboptimal paths and even paths that are
infeasible to follow due to mismatches in the assumptions
made by the higher and lower level planners.

Our approach does not split the planning process into two
fixed layers but rather mixes the dimensionalities of the plan-
ning problem within a single planning process. The tech-

52

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

nique most similar to ours is the hierarchical planners us-
ing homomorphic abstraction which have shown excellent
runtime reductions by grouping adjacent states together and
pre-computing costs for traversing the set from all possible
entry and exit points (Botea, Müller, and Schaeffer 2004).
This approach requires significant pre-processing in order
to be effective. Other hierarchical planners use different
methods of abstraction to make better informed heuristics
to guide the search (Bulitko et al. 2007). Our method dif-
fers from these in that we change the dimensionality of a
state-space where necessary as opposed to combining states
to have connecting edges.

Our approach is also somewhat relevant to planners that
use very accurate pre-computed heuristic values (Knepper
and Kelly 2006). The heuristics are often derived by solving
a lower-dimensional problem. As a result, these methods
can be viewed as a full-dimensional planning that uses the
results of the lower dimensional planning. Unlike our ap-
proach however, these methods do not explicitly decrease
the dimensionality and, as a result, can run into severe com-
putational problems when the heuristic is incorrect.

3 Planning with Adaptive Dimensionality

3.1 Definitions, Notations, Assumptions

We are assuming that the planning problem is represented
by a discretized finite state-space S of dimensionality d,
consisting of state vectors X = (x1, ..., xd), and a set of
transitions T = {(Xi, Xj)|Xi, Xj ∈ S}. Each transition
(Xi, Xj) corresponds to a feasible transition between the
corresponding state vector values and is associated with a
cost c(Xi, Xj) which is bounded from below by some posi-
tive δ, that is, c(Xi, Xj) > δ > 0. Thus, we have an edge-
weighted graph G with a vertex set S and edge set T . The
goal of the planner is to find a least-cost path in G from the
start state XS to the goal state XG. We will use the notation
π(Xi, Xj) to denote a path in graph G from state Xi to state
Xj . We will use π∗(Xi, Xj) to denote a least-cost path.
The cost of any path π(Xi, Xj) is the cumulative costs of
the transitions along it and will be notated by c(π(Xi, Xj)).

Consider two state-spaces—a high-dimensional Shd with
dimensionality h, and a low-dimensional Sld with dimen-
sionality l, which is a projection of Shd onto a lower di-
mensional manifold (h > l, |Shd| > |Sld|). We define a
many-to-one mapping

λ : Shd → Sld

from the high-dimensional state-space Shd to the low-
dimensional state-space Sld. For example, in the case of
3D/2D navigation planning we used the simple mapping
λ((x, y, θ)) = (x, y), just dropping the heading information
θ.

Each of the two state-spaces may have its own transition
set. For example, in the 3D/2D navigation planning scenario
we used 8-connected grid transitions for the 2D state-space,
and a set of precomputed feasible atomic actions that capture
the kinodynamic constraints of the vehicle, called motion
primitives, as transitions for the 3D state-space (Figure 1).
We require that the costs of the transitions be such that for

Figure 1: Example state transitions for a 3D/2D state-space–white cells are 2D states (x, y),
dark gray cells are 2D states with feasible 3D transitions to 3D states (x, y, heading), and the light
gray cells are 3D states. On the upper left is shown a 2D state with all of its feasible transitions
(only 2D transitions). The state in the middle right is in the boundary area, so its feasible transitions
include all 2D transitions that end in a 2D state and all 3D transitions (from all possible heading
values) that end in a 3D state. In light gray are shown some of the disallowed 3D transitions, since
they lead to 2D states. In the lower left is a 3D state with all of its 3D transitions (heading indicated
by the white arrow).

every pair of states Xi and Xj in Shd,

c (π∗ (Xi, Xj)) ≥ c (π∗ (λ(Xi), λ(Xj))) (1)

That is, we require that the cost of a least-cost path between
any two states in the high-dimensional state-space to be at
least the cost of a least-cost path between their images in the
low-dimensional state-space.

We also define the mapping λ−1 : Sld → (Shd)∗ from
the low-dimensional state-space Sld to subsets of the high-
dimensional state-space Shd, defined by

λ−1(X ld) = {X ∈ Shd|λ(X) = X ld}
Notice that λ−1 is a one-to-many mapping.

Let Ghd and Gld represent the corresponding graphs de-
fined by Shd and Sld and their respective transition sets Thd

and T ld.
The idea of our algorithm is to iteratively construct and

search an adaptively-dimensional state-space Sad. We dis-
cuss the structure and the construction of Sad in the next
section.

3.2 Algorithm

Structure of Sad: Recall that the goal of our algorithm
was to use the faster low-dimensional planning, except for
areas of the environment where high-dimensional planning
is necessary to ensure the feasibility of the resulting path.
We want our adaptively-dimensional state-space to cap-
ture this property—namely, we want to have largely low-
dimensional states in Sad, except for the areas where high-
dimensional planning needs to be done, represented by high-
dimensional states in Sad. To ensure path feasibility in
the high-dimensional regions of Sad, we have to use high-
dimensional transitions. In the low-dimensional areas we
can use simpler low-dimensional transitions. However, re-
call that the transitions we have in Thd and T ld connect two
states of the same dimensionality, which do not allow us to
transition from the low-dimensional to the high-dimensional
regions. Therefore, we have to construct a transition set T ad

that allows for transitions between states of different dimen-
sionalities.

Construction of Sad: Our algorithm iteratively con-
structs Sad, beginning with the low-dimensional-state space
Sld and introducing a set of high-dimensional regions R in
it. We will first explain how the high-dimensional regions

53

(a) Initial 2D/3D path (b) Tunnel around path (c) Tracking in tunnel (d) Add sphere at point of fail-

ure

(e) 2D/3D path (f) Tunnel around path

(g) Tracking in tunnel (h) Add sphere at point of fail-

ure

(i) 2D/3D path (j) Tunnel around path (k) Tracking in tunnel (l) Final trajectory

Figure 2: Example of iterative process for simple map. The light gray circles are the states that exist in 3D, while the darker gray outer circles represent the border of 2D states which have valid 3D transitions
going into the 3D areas. The black bars are obstacles, white areas are 2D only, and the dark gray lines are the path from the 2D/3D search and the forward simulation.

are being introduced into Sad and connected with the low-
dimensional regions. The algorithm that decides when and
where to introduce these regions will be explained later.

Once a high-dimensional region r is introduced, the fol-
lowing changes are done to Sad. If a low-dimensional
state X ld

i falls inside a high-dimensional region r ∈ R,
we replace it with its high-dimensional projection states in
λ−1(X ld

i). Thus, Sad contains both low-dimensional and
high-dimensional states. Notice that if a high-dimensional
state Xhd is in Sad, then its low-dimensional projection
λ(Xhd) is not in Sad, and also if Xhd �∈ Sad, then
λ(Xhd) ∈ Sad.

Next we define the transition set T ad for the adaptively-
dimensional state-space as follows. For any state Xi ∈ Sad:

• If Xi is high-dimensional then for all high-dimensional
transitions (Xi, X

hd
j) ∈ Thd, if Xhd

j ∈ Sad then
(Xi, X

hd
j) ∈ T ad. If Xhd

j �∈ Sad, then (Xi, λ(X
hd
j)) ∈

T ad. That is, for high-dimensional states we allow only
high-dimensional transitions to other high-dimensional
states if they fall inside Sad, or their low-dimensional pro-
jections (Fig. 1 lower left).

• If Xi is low-dimensional then for all low-dimensional
transitions (Xi, X

ld
j) ∈ T ld, if X ld

j ∈ Sad then
(Xi, X

ld
j) ∈ T ad and for all high-dimensional transitions

(X,Xhd
j) ∈ Thd, where X ∈ λ−1(Xi), if Xhd

j ∈ Sad

then (Xi, X
hd
j) ∈ T ad. That is, for low-dimensional

states we allow low-dimensional transitions if they lead
to another low-dimensional state in Sad (Fig. 1 upper
left), and high-dimensional transitions from their high-
dimensional projections if they lead to a high-dimensional
state in Sad (Fig. 1 right).

Notice, that the above definition of T ad allows for transi-
tions between states of different dimensionalities. Figure 1
illustrates the set of transitions in the adaptive graph in the
case of 3D (x, y, θ) path planning.

The adaptively-dimensional state-space Sad and the tran-
sition set T ad give us a graph Gad of adaptive dimensional-
ity. Adding new high-dimensional regions or increasing the
sizes of existing regions requires the reconstruction of Sad

and T ad, and thus, will produce a new instance of Gad.
We also define a tunnel τ of radius w around an

adaptively-dimensional path πad as follows: τ is a subgraph
of Ghd, and thus consists of high-dimensional states and
transitions. A high dimensional state Xhd ∈ τ if there ex-
ists a state Xi ∈ πad such that the distance from λ(Xhd)
to Xi (or λ(Xi) if Xi is high-dimensional) is no larger than
w, for some pre-defined distance metric in Sld. We include
all transitions (Xj , Xk) from Thd such that both Xj and Xk

are in τ .
We continue this section with an intuitive description of

our proposed algorithm, in particular the algorithm for de-
ciding when and where to introduce the high-dimensional
regions within Sad. Figure 2 provides an illustration of
a run of the algorithm for 3D (x, y, θ) path planning, that
completed in 3 iterations. Algorithm 1 gives the pseudo
code for our algorithm. Each iteration of the algorithm con-
sists of two phases—an adaptive planning phase (Fig. 2(a))
and a path tracking phase (Fig. 2(b) - 2(d)). In the adap-
tive planning phase, the current instance of the adaptively-
dimensional graph Gad is searched for a least-cost path of
adaptive dimensionality from start to goal. The tracking
phase, then attempts to construct a high-dimensional exe-
cutable path to match (or track) the adaptive path computed
in the adaptive planning phase.

Initially, Gad is the same as Gld, with two high-
dimensional regions added around the start and goal states
(Algorithm 1, lines 1-3), which are necessary since the start
and goal states are high-dimensional. At each iteration, a
new instance of Gad is constructed based on the set of high-
dimensional regions, and is searched for a least-cost path
π∗
ad from XS to XG. Notice that π∗

ad consists of both low-
dimensional and high-dimensional states, so it is not an ex-
ecutable path. If no path is found in the adaptive planning
phase, then no feasible path exists from start to goal and
the algorithm terminates. If an adaptive path π∗

ad is found,
then the path tracking phase constructs a tunnel τ of ra-
dius w around the adaptive path π∗

ad (Fig. 2(b)). Then τ
is searched for a least-cost path π∗

τ from start to goal (Fig.
2(c)). Note that since τ consists of only high-dimensional
states and transitions, π∗

τ is a fully high-dimensional path,

54

(a) XS and XG (b) 7D spheres at XS and XG (c) πad(XS , XG) for iteration 1 (d) New sphere inserted at point of tracking

failure

(e) πad(XS , XG) for iteration 2 (f) Final 7D arm trajectory after successful

tracking

(g) Final trajectory (obstacles not shown) (h) Final trajectory (top view)

Figure 3: Example environment for robotic arm motion planning. A trajectory is computed of how the arm can be maneuvered from the start configuration to reach through the opening to the goal arm
configuration in two iterations of our algorithm. 3(c) and 3(e) show the adaptively-dimensional paths computed at each iteration

and thus, it is executable. If no path is found in τ , then
a new high-dimensional region is introduced in Gad or the
sizes of the existing regions are increased, and the algorithm
proceeds to the next iteration. If a path is found in τ , but its
cost c(π∗

τ) > ε track · c(π∗
ad), then a new high-dimensional re-

gion is introduced or the sizes of existing high-dimensional
regions are increased, and another iteration is started. If
c(π∗

τ) ≤ ε track · c(π∗
ad), then the algorithm returns π∗

τ as a
feasible path from start to goal and terminates. The returned
path is guaranteed to have cost that is no more than ε track

times the cost of an optimal path in Ghd.
Identifying the places where high-dimensional regions

need to be introduced is a non-trivial problem in itself. In
both of our experiments, the search within the tunnel dur-
ing the path tracking phase keeps a record of how far along
the tunnel states have been expanded. Thus, if the search
in τ fails, we are able to reconstruct a path to the point
where the search had failed, and we introduce a new high-
dimensional region there, as seen in Fig. 2(c),2(d),2(g), and
2(h). Line 17 of algorithm 1 is obscure about how exactly
the state Xr where a new high-dimensional region needs to
be introduced is being computed. There are a number of
approaches that can be taken in identifying such a state. Per-
haps the simplest one is to pick a random location along the
path where to introduce a new region. A more sophisticated
technique, which we implemented, is to approximate the lo-
cation, where the largest cost discrepancy between π∗

ad and
π∗
τ is observed. Introducing a new high-dimensional region

at that location tends to remedy the cost discrepancy, and
generally works well in identifying the regions that require
high-dimensional planning. The approach taken in comput-
ing Xr does not affect the theoretical properties of the al-
gorithm, such as algorithm termination and suboptimality
guarantees.

3.3 Theoretical Properties

The presented algorithm is complete with respect to Gad

and provides guarantees on the suboptimality related to the
ε track constant.

Algorithm 1 Path Planning with Adaptive Dimensionality

1: Gad = Gld

2: AddFullDimRegion(Gad, λ(XS))
3: AddFullDimRegion(Gad, λ(XG))
4: loop
5: search Gad for least-cost path π∗

ad(XS , XG)
6: if π∗

ad(XS , XG) is not found then
7: return no path from XS to XG exists
8: construct a tunnel τ around π∗

ad(XS , XG)
9: search τ for least-cost path π∗

τ (XS , XG)
10: if π∗

τ (XS , XG) is not found then
11: let π(XS , Xend) be the returned path
12: if Xend is already within FullDimRegion in Gad then
13: GrowFullDimRegion(Gad, λ(Xend))
14: else
15: AddFullDimRegion(Gad, λ(Xend))
16: else if c(π∗

τ (XS , XG)) > ε track · c(π∗
ad(XS , XG)) then

17: identify a state Xr where a new FullDimRegion needs to
be introduced

18: if Xr is already within FullDimRegion in Gad then
19: GrowFullDimRegion(Gad, Xr)
20: else
21: AddFullDimRegion(Gad, Xr)
22: else
23: return π∗

τ (XS , XG)

Theorem 3.1 The cost of a least-cost path from XS to XG,
π∗
ad(XS , XG), in Gad is a lower bound on the cost of a least-

cost path from XS to XG, π∗
hd(XS , XG), in Ghd.

c(π∗
ad(XS , XG)) ≤ c(π∗

hd(XS , XG))
Proof Consider the projection of the path c(π∗

hd(XS , XG))
onto the adaptive dimensionality state-space Sad. In this
projection, every state X in π∗

hd(XS , XG) is mapped onto
itself if X ∈ Sad and onto λ(X) otherwise. Then ac-
cording to equation 1, every transition Ti in the projected
version of the path π∗

hd(XS , XG) will either be bounded
from above by the cost of the corresponding transition in

55

π∗
hd(XS , XG) if Ti is a low-dimensional transition, or will

be exactly equal to the cost of the corresponding transition if
Ti is a high-dimensional transition. Consequently, the cost
of the projected version of π∗

hd(XS , XG) will be no larger
than c(π∗

hd(XS , XG)). Furthermore, since π∗
ad(XS , XG)

is a least-cost path from XS to XG in Sad, its cost is no
larger than the cost of any other path including the cost
of the projected version of π∗

hd(XS , XG). As a result,
c(π∗

ad(XS , XG)) ≤ c(π∗
hd(XS , XG)).

Theorem 3.2 If we have a finite state-space, algorithm 1
terminates and at the time of its termination, the cost of the
returned path π(XS , XG) is no more than ε track times the
cost of an optimal path from state XS to state XG in Ghd.

Proof The termination of the algorithm is ensured by the
fact that after each iteration we are introducing new high-
dimensional states to Gad. Since we have a finite state-
space, after finitely many iterations, Gad will become iden-
tical to Ghd, containing only high-dimensional states. Gad

will then be searched for a least-cost path in a finite time.
If a path is successfully computed by the adaptive planning
phase, it will be fully high-dimensional and the tracking
phase will be able to track the computed path exactly, caus-
ing the algorithm to terminate. If no path is found in Gad,
the algorithm again terminates stating that no feasible path
exists from start to goal.

The second statement of Theorem 3.2 follows from The-
orem 3.1. By Theorem 3.1, the adaptive planning phase pro-
duces an underestimate of the real cost from start to goal,
that is c(π∗

ad(XS , XG)) ≤ c(π∗
hd(XS , XG)). Upon algo-

rithm termination, the tracking phase succeeds in finding a
path of cost no more than ε track times the cost of the com-
puted adaptive path. Thus, we have c(πτ (XS , XG)) ≤
ε track · c(π∗

ad(XS , XG)) ≤ ε track · c(π∗
hd(XS , XG)). Hence,

the cost of the tracked path is no larger than ε track times the
cost of an optimal path from start to goal in Ghd.

ε-suboptimal graph searches such as weighted-A* are often
used by researchers (Likhachev and Ferguson 2008), since
they provide the flexibility of quickly finding paths of cost
no more than ε times the cost of an optimal path. The fol-
lowing result can be proven if we modify algorithm 1 to use
such ε-suboptimal graph searches:

Theorem 3.3 If ε plan-suboptimal searches are used in lines
5 and 9 of algorithm 1, the cost of the path returned by our
algorithm is no larger than ε plan · ε track · π∗

hd(XS , XG).

Proof If we use an ε-suboptimal search in the adaptive plan-
ning phase, we know that that the cost of the produced path
c(πad) is no larger than ε · c(π∗

ad). Then we have c(πad) ≤
ε · c(π∗

ad) ≤ ε · c(π∗
hd). Then we know that the tracking

phase produced a path πτ of cost no larger than ε track ·c(πad).
Hence, we have c(πτ) ≤ ε track · c(πad) ≤ ε track · ε · c(π∗

hd).

3.4 Algorithm Parameters

Our algorithm has several important parameters that directly
affect its execution time:

• tracking suboptimality parameter ε track ≥ 1 – affects the
number of iterations of the algorithm. Larger values pro-

duce more suboptimal final paths with fewer algorithm it-
erations, trading off path suboptimality for planning time.

• adaptive search suboptimality parameter ε plan ≥ 1 – af-
fects the time spent in the adaptive planning phase of each
iteration. Larger values produce more suboptimal paths
quicker, trading off path suboptimality for planning time.

• size of high-dim. regions – affects the number of it-
erations and also the time spent in the adaptive plan-
ning phase of the algorithm. Larger regions tend to re-
duce the number of iterations but many unnecessary high-
dimensional states may be introduced, which increases
adaptive planning time. The parameter generally trades
off between number of algorithm iterations and time re-
quired per iteration.

• width of the tracking tunnel τ – affects the amount of
time taken by the tracking phase of the algorithm and the
chances of successful tracking. The parameter trades off
the number of iterations for tracking time per iteration.

4 Implementation and Experimental

Analysis

The domains we chose to validate our algorithm were
robotic path planning for non-holonomic robots done in
three dimensions—(x, y, heading), and arm motion plan-
ning for 7 DOF robotic arm on the Willow Garage’s PR2
robot. In both cases our algorithm implementation kept
track of the high-dimensional regions of the environment as
spheres: 2D (x, y) circles in the case of 3D path planning,
and 3D (x, y, z of the end-effector) spheres in the case of
robotic arm motion planning). This allowed us to quickly
check if a state falls inside a region or not, and also quickly
add new regions and grow the sizes of existing ones.

In both cases the graph G representing the problem was
constructed as a lattice-based graph, similar to the approach
taken in (Likhachev and Ferguson 2008), except we used
constant resolution for all lattices. In lattice-based planning,
each state consists of a vertex encoding a state vector and
edges corresponding to feasible transitions to other states.
The set of edges incident to a state are computed based on a
set of pre-computed motion primitives, which are executable
by the robot.

4.1 3D Path Planning

For the 3D planning, we modeled our environment as a pla-
nar world and a polygonal robot with three degrees of free-
dom: x, y, and θ (heading). We used a very simple projection
function λ to transform 3D states to 2D states:

λ3D/2D(x, y, θ) = (x, y)

We used a 16-discretized value for the heading angle, thus,
our λ−1 mapping was:

λ−1
3D/2D(x, y) = {(x, y, 0), ..., (x, y, 15)}

The set of motion primitives used for 3D states consisted
of long straight, short straight, left and right turn elements
for both forward and reverse motion, as can be seen in the
lower left corner of figure 1. The motion primitives used for

56

(a) Typical map used for 3D/2D navigation. (b) Example map for which the 2D Dijkstra

heuristic is misleading for the 3D search (the

opening on the lower left is not traversable us-

ing 3D motion primitives).

Figure 4: Maps of size 2500x2500 cells.

2D states were the eight neighboring states (eight-connected
2D grid), as seen in the upper left of figure 1. It should be
noted that the motion primitives for 2D states do not produce
feasible paths.

We compared our algorithm to the full 3D planner on sev-
eral different map sizes. Small maps with few hundred cells
in each dimension were quickly solved by the full 3D plan-
ner, so little benefit was seen of our algorithm. On maps with
5000 or more cells in both x and y dimensions, the full 3D
planner was unable to find a solution due to memory con-
straints, while our algorithm, having to expand a lot fewer
states, was still able to plan successfully.

As a middle ground and to prevent the results from being
skewed by the 3D planner having to use the significantly
slower hard drive swap space, we randomly generated 50
2500x2500 cell maps typified by figure 4(a) for our test runs.

In all the cases we used a 2D Dijkstra search as the heuris-
tic to help guide a weighted-A* 3D planner towards the goal
state. Weighted-A* multiplies the heuristic by an ε value to
direct the planner along the heuristic path as in (Likhachev
and Ferguson 2008). By weighting the heuristic in this man-
ner the resulting path cost is guaranteed to be within ε of the
optimal cost. In addition, for the 2D portion of our planner
and the heuristic generation for the 3D planner, the obsta-
cles on the map were inflated by the inscribed circle radius
to preclude the generation of paths through areas too narrow
for the robot to physically traverse.

The underlying search algorithm used in both the adap-
tive planning phase and the tracking phase of our algorithm
was also weighted-A* using the ε plan parameter suboptimal-
ity bound. In addition, the tunnel width we used for the
tracking phase was six cells, and the radii of newly added
spheres were 20 cells. Since the longest motion primitive
was 10 cells long, these parameter values seemed sufficient
to allow reasonable range of maneuvers to occur within a
sphere and within the tracking tunnel τ .

For each map three values of the suboptimality parameter
ε were tried: 1.1, 1.5 and 3.0 with the adaptive planner using
the square root of ε for both ε plan and ε track, giving an overall
suboptimality bound of the adaptive algorithm of ε. For both
planners a maximum planning time was enforced based on
the value of ε: ε = 1.1 : 5 minutes, ε = 1.5 : 4 minutes,
ε = 3.0 : 3 minutes.

Figure 5: Trajectory from Fig. 3 being executed by an actual PR2 robot

4.2 Robotic Arm Motion Planning

In the case of the robotic arm motion planning, our goal was
to use a 7D/3D adaptive planning, where 3D states repre-
sented the arm’s end-effector position, and 7D states repre-
sented the full arm configuration. Generally, the full arm
configuration on the PR2 robot is given by its seven joint
angles (shoulder pan, shoulder lift, shoulder roll, elbow flex,
forearm roll, wrist flex, wrist roll). Constructing a λ map-
ping reducing full joint angle configuration to end effector
position presented several challenges—namely discretiza-
tion of the joint angle space could not be easily matched
to a discretization of the end-effector position space, and λ
and λ−1 would have needed to involve expensive FK and IK
computations. Instead, we decided to transform the standard
7D robot arm configuration representation to one described
in (Tolani, Goswami, and Badler 2000), which converts joint
angles representations of a 7 DOF arm to 7 DOF representa-
tions consisting of the following values: (end-effector x po-
sition, end-effector y position, end-effector z position, end-
effector roll, end-effector pitch, end-effector yaw, swivel an-
gle). We are going to adopt the following short-hand no-
tation for describing such states: (eeposition, eeorientation,
swivel), where eeposition and eeorientation consist of 3 val-
ues each. For more details on the representation, consult
(Tolani, Goswami, and Badler 2000). This alternative rep-
resentation of the full arm configuration did not change the
dimensionality of the high-dimensional state-space, but pro-
vided clean and easy λ and λ−1 mappings without any di-
cretization inconsistencies.

λ7D/3D(eeposition, eeorientation, swivel) = (eeposition)

λ−1
7D/3D(eeposition) = {(eeposition, eeorientation, swivel)|

for all feasible values of swivel and eeorientation}
We used very simple motion primitives for the 7D arm

motion planning—namely we allow +/-1 change in each of
the seven state-vector values. This produces 14 possible
transitions for 7D states and 6 possible transitions for 3D
states. Due to the simplicity of the motion primitives, the re-
sulting arm trajectory is not very smooth, but experimenting
with a more complex set of motion primitives is one of our
future work goals.

We chose a 2 cm. 3D grid resolution for the end-effector
position, and 16-discretized values for the four angles. This
produced a 3D grid of 75x75x75, or roughly 420,000 low-
dimensional states, centered at the shoulder joint. In each
cell of the grid we have 164 ∼ 65, 000 possible high-
dimensional states, giving us a total of about 28 billion states
in the high-dimensional state-space.

We ran both the adaptive dimensionality planning algo-
rithm and the full 7D planning algorithm on 35 environ-
ments and compared the results. Environments ranged in

57

degree of difficulty—some required very simple motions to
navigate from start to goal, while others were more cluttered
and required a set of complex maneuvers to navigate around
the obstacles. Some of the types of environments we used in-
cluded various table tops, bookshelves, and random cuboid
obstacles. Both the adaptively-dimensional and the 7D algo-
rithm utilized a 3D Dijkstra heuristic to guide the planners
to the position constraint. We treated the end-effector as a
point robot of radius equal to the radius of the largest link of
the arm. More sophisticated collision checking and enforc-
ing of joint limits were done on high-dimensional states.

We observed that new sphere radius parameter value of
about 10cm. allows sufficient arm maneuvering. Also tun-
nel radius of 10-20cm. provides a good balance between
the success rate of the tracking phase and the time needed
for tracking a path. Since we have a large number of high-
dimensional states, we imposed time limits on both the adap-
tive planning phase and the tracking phase. The time limit
we used for the adaptive planning phase was 120 seconds. If
the limit was reached the adaptive planning failed and the al-
gorithm terminated, reporting that no path from start to goal
could be found in the given time limit. Due to the number
of states inside the tunnel τ even with a small radius, the
tracking search might take a long time to find a path through
the tunnel or fail. Since we require the tracking to fail be-
fore we begin a new iteration, it becomes impractical to wait
long for tracking to fail before starting a new iteration. Thus,
we limit the time for the tracking phase, allowing us to pro-
ceed to the next itration more quickly. The time limit on the
tracking phase we used was 20 seconds.

4.3 Results

For both the 3D path planning and the 7D motion plan-
ning on robotic arm experiments, we compared the total
number of states expanded, number of high-dimensional
states expanded, final path cost, and execution time of
the adaptively-dimensional planner compared to the high-
dimensional planner, for each of the maps tested. Our re-
sults are summarized in table 1 for 3D vehicle navigation
and table 2 for the robotic arm motion planning.

In the case of 3D path planning, while the average time for
the adaptively-dimensional planner was significantly shorter
than the average time for the 3D planner it is interesting to
note that the 3D planner was actually faster on 54 out of 100
runs. When the map was benign, the 2D Djikstra heuristic
allowed the 3D planner to expand very few states, particu-
larly at higher ε plan values. However, two particular cases
led to very long 3D plan times: the case of a map with no
solution and the case of a map where the solution required
a route very different from the one computed by the heuris-
tic. Of the 18 runs where neither algorithm was able to find
a solution in the allowed time the adaptively-dimensional
planner recognized no solution was available in an average
of 12 seconds with a maximum of 25 seconds. On the other
hand, the 3D planner in all but two cases ran out of allowable
execution times (determined the two cases after 177 and 175
seconds for ε = 1.5 and ε = 3.0 respectively).

The second case where the adaptive-dimensionality plan-
ner performed significantly better than the 3D planner is the

set of maps where the heuristic for the 3D planner fails to
find a good route. An example of this type of map is shown
in figure 4(b). A significantly shorter path exists from start
to goal going through the narrow opening depicted in the
lower left. Even after inflating the obstacles, the 2D plan-
ner is capable of finding a route through the narrow passage.
However, this path is not executable using the 3D motion
primitives. The 3D planner cannot make use of this infor-
mation and update its heuristic due to its non-iterative na-
ture. The adaptively-dimensional algorithm initially plans a
2D path through the short cut, but after attempting to track
this path, finds that it cannot negotiate the tight turn and
places a sphere at that location. During the next iteration
while expanding the 3D states in the sphere the adaptively-
dimensional planner determines that no path through the
sphere exists and reverts back to the 2D planner to explore
other alternative routes. By using the lower-dimensional
search to find the alternate route, this search can be per-
formed significantly quicker than the full 3D search.

In the case of 7D motion planning on a robotic arm, we
noticed results similar to those obtained in the 3D path plan-
ning experiments. For simple environments where the 3D
Dijkstra heuristic provides good guidance to the goal and
for high ε plan values, 7D planning is able to quickly iden-
tify a path from start to goal satisfying the suboptimality
constraint, without having to expand many states. However,
in cases of complex environments, where the heuristic fails
to provide good guidance to the goal, or for lower subopti-
mality bounds the adaptively-dimensional planner performs
significantly faster. As seen in table 2, adaptive planning is
able to achieve about two times speedup on the average over
seven-dimensional planning for suboptimality bound of 5.0,
and about ten times speedup for suboptimality bound of 2.0.
We ran our algorithm with several sets of parameter values.
It is interesting to note that increasing the tracking tunnel
radius by a factor of 2 results in about 4 times increase in
the average number of 7D states expanded during tracking,
and thus, about 4 times increase in the average planning time
(19.59s). On the other hand, decreasing the tracking tunnel
radius by a factor of 2 results in increased number of algo-
rithm iterations on some of the more cluttered environments,
slightly increasing the average planning time (7.66s).

4.4 Comparison with Sampling-Based Planners

Algorithm
End-effector distance Elbow distance

between a pair of trajectories between a pair of trajectories
Avg. Max. Avg. Max.

RRT (smoothed) 8.2 cm 27.5 cm 6.6 cm 18.0 cm
RRT (not smoothed) 9.7 cm 28.8 cm 6.5 cm 17.9 cm
adaptive 2.5 cm 7.7 cm 2.2 cm 7.9 cm

Table 3: Trajectory consistency comparison between our planner
and an RRT planner in the 7DOF robotic arm setting.

We also compared our adaptively-dimensional planner
with a sampling-based planner—RRT (LaValle and Kuffner
2001; Kuffner and LaValle 2000; Kavraki et al. 1996)—
in the 7DOF robot-arm setting. The advantages of our
algorithm over sampling-based planners are deterministic
bounds on suboptimality guarantees, consistency in the so-
lutions of similar problems, and applicability to any (includ-
ing discrete) planning problems that can be represented as

58

Algorithm Suboptimality Time (secs) # 3D Expands (in thousands) # 2D Expands (in thousands) Total Expands (in thousands) Path Cost
Bound mean std dev mean std dev mean std dev mean std dev mean std dev

3D 1.1 142.57 60.24 5218 2177 n/a 5218 2177 58763 9610
adaptive 1.1 184.99 112.93 4448 2884 2434 1793 6957 3946 59202 9856
3D 1.5 83.74 104.94 2813 3533 n/a 2813 3533 68360 11946
adaptive 1.5 25.78 48.96 648 1665 826 1332 1476 2541 66630 13400
3D 3.0 59.99 79.16 2252 3064 n/a 2252 3064 79707 13463
adaptive 3.0 15.21 35.80 396 1319 656 1145 1053 1903 71358 13372

Table 1: Testing results on randomly generated maps for 3D path planning on non-holonomic robot

Algorithm Suboptimality Time (secs) # Iterations # 7D Expands # 3D Expands Total Expands Path Cost Successful
Bound mean std dev mean max mean std dev mean std dev mean std dev mean std dev Plans

7D 2.0 147.88 59.93 n/a 769743 1103939 n/a 769743 1103939 63417 18088 12 of 35
adaptive 2.0 14.42 41.95 1.31 6.0 47419 151391 33219 189870 79689 244112 72656 17000 33 of 35
7D 5.0 10.63 15.66 n/a 46529 65586 n/a 46529 65586 73344 19092 31 of 35
adaptive 5.0 5.23 10.45 1.06 2.0 23877 45427 113 40 23986 45439 75400 18839 34 of 35

Table 2: Testing results on 35 environments for 7D motion planning on robotic arm

a graph and have corresponding low-dimensional graph rep-
resentations. Although our algorithm could not match the
speed of RRT, the consistency of our planner was signifi-
cantly better—it produced very similar trajectories for simi-
lar start/goal configurations within an environment.

We used the following experimental setup for measuring
the consistency of the planners. We picked a random table-
top environment in which the goal is to maneuver the robotic
arm from under to over a table-top. We created 10 scenarios
with similar (but not the same) start and goal configurations
in that environment. We ran both our planner and the RRT
planner on these scenarios. To measure the consistency be-
tween a pair of arm trajectories produced by a planner, we
measured the average and maximum distances between end-
effector positions along the trajectories and also the average
and maximum distances between elbow positions along the
trajectories. We calculated the consistency between all (45)
pairs of the 10 trajectories produced by our planner and com-
pared it with the consistency between all (45) pairs of the 10
RRT trajectories (we compared with both RRT with post-
smoothing and RRT without smoothing; smoothing opera-
tions included shortcutting and quintic spline smoothing).
Table 3 shows the maximum and average end-effector and
elbow distances averaged over the 45 pairwise comparisons
of the 10 trajectories for each planner.

5 Conclusion

While many path planning problems are seemingly high-
dimensional, they are often low-dimensional in most of the
state-space. In this paper, we have presented an algorithm
that tries to exploit this observation and constructs a state-
space of adaptive dimensionality: high dimensionality is in-
troduced only where it is necessary. This results in a signifi-
cant speedup over the full-dimensional planning alternatives
without sacrificing the guarantees on completeness and sub-
optimality.

References

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near Optimal
Hierarchical Path-Finding. Journal of Game Development
1(1):7–28.
Brock, O., and Khatib, O. 1999. High-speed navigation us-
ing the global dynamic window approach. In Proceedings

of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 341–346.
Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artificial
Intelligence Research (JAIR) 30:51 – 100.
Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580.
Knepper, R., and Kelly, A. 2006. High performance state
lattice planning using heuristic look-up tables. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Confer-
ence on, 3375–3380.
Kuffner, J., and LaValle, S. 2000. RRT-connect: An effi-
cient approach to single-query path planning. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), 995–1001.
LaValle, S., and Kuffner, J. 2001. Rapidly-exploring ran-
dom trees progress and prospects. Algorithmic and Compu-
tational Robotics New Directions 293 – 308.
Likhachev, M., and Ferguson, D. 2008. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
In Proceedings of Robotics: Science and Systems (RSS).
Philippsen, R., and Siegwart, R. 2003. Smooth and efficient
obstacle avoidance for a tour guide robot. In ICRA, 446–451.
Thrun, S., et al. 1998. Map learning and high-speed nav-
igation in RHINO. In Kortenkamp, D.; Bonasso, R.; and
Murphy, R., eds., AI-based Mobile Robots: Case Studies of
Successful Robot Systems. Cambridge, MA: MIT Press.
Tolani, D.; Goswami, A.; and Badler, N. 2000. Real-time
inverse kinematics techniques for anthropomorphic limbs.
Graphical Models 62:353 – 388.

59

	University of Pennsylvania
	ScholarlyCommons
	2011

	Path Planning With Adaptive Dimensionality
	Kalin Gochev
	Benjamin Cohen
	Jonathan Butzke
	Alla Safonova
	Maxim Likhachev
	Recommended Citation

	Path Planning With Adaptive Dimensionality
	Abstract
	Keywords
	Disciplines

	Path Planning with Adaptive Dimensionality

