241,345 research outputs found

    Trajectory Planning on Grids: Considering Speed Limit Constraints

    Get PDF
    Trajectory (path) planning is a well known and thoroughly studied field of automated planning. It is usually used in computer games, robotics or autonomous agent simulations. Grids are often used for regular discretization of continuous space. Many methods exist for trajectory (path) planning on grids, we address the well known A* algorithm and the state-of-the-art Theta* algorithm. Theta* algorithm, as opposed to A*, provides ‘any-angle‘ paths that look more realistic. In this paper, we provide an extension of both these algorithms to enable support for speed limit constraints.We experimentally evaluate and thoroughly discuss how the extensions affect the planning process showing reasonability and justification of our approach

    Path Planning Problems with Side Observations-When Colonels Play Hide-and-Seek

    Get PDF
    Resource allocation games such as the famous Colonel Blotto (CB) and Hide-and-Seek (HS) games are often used to model a large variety of practical problems, but only in their one-shot versions. Indeed, due to their extremely large strategy space, it remains an open question how one can efficiently learn in these games. In this work, we show that the online CB and HS games can be cast as path planning problems with side-observations (SOPPP): at each stage, a learner chooses a path on a directed acyclic graph and suffers the sum of losses that are adversarially assigned to the corresponding edges; and she then receives semi-bandit feedback with side-observations (i.e., she observes the losses on the chosen edges plus some others). We propose a novel algorithm, EXP3-OE, the first-of-its-kind with guaranteed efficient running time for SOPPP without requiring any auxiliary oracle. We provide an expected-regret bound of EXP3-OE in SOPPP matching the order of the best benchmark in the literature. Moreover, we introduce additional assumptions on the observability model under which we can further improve the regret bounds of EXP3-OE. We illustrate the benefit of using EXP3-OE in SOPPP by applying it to the online CB and HS games.Comment: Previously, this work appeared as arXiv:1911.09023 which was mistakenly submitted as a new article (has been submitted to be withdrawn). This is a preprint of the work published in Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI

    Towards natural language understanding in text-based games

    Get PDF
    Text-based games are a very promising space for language-focused machine learning. Within them are huge hurdles in machine learning, like long-term planning and memory, interpretation and generation of natural language, unpredictability, and more. One problem to consider in the realm of natural language interpretation is how to train a machine learning model to understand a text-based game’s objective. This work considers treating this issue like a machine translation problem, where a detailed objective or list of instructions is given as input, and output is a predicted list of actions. This work also explores how a supervised learning system might learn long-term planning and memory through the example of an oracle that always knows the best path. In this exploration, the work here shows that finding this best path is infeasible
    • …
    corecore