342,476 research outputs found

    Cyclical Flow: Spatial Synthesis Sound Toy as Multichannel Composition Tool

    Get PDF
    This paper outlines and discusses an interactive system designed as a playful ā€˜sound toyā€™ for spatial composition. Proposed models of composition and design in this context are discussed. The design, functionality and application of the software system is then outlined and summarised. The paper concludes with observations from use, and discussion of future developments

    Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London

    Get PDF
    Understanding and modelling route choice behaviour is central to predicting the formation and propagation of urban road congestion. Yet within conventional literature disagreements persist around the nature of route choice behaviour, and how it should be modelled. In this paper, both the shortest path and anchor-based perspectives on route choice behaviour are explored through an empirical analysis of nearly 700,000 minicab routes across London, United Kingdom. In the first set of analyses, the degree of similarity between observed routes and possible shortest paths is established. Shortest paths demonstrate poor performance in predicting both observed route choice and characteristics. The second stage of analysis explores the influence of specific urban features, named anchors, in route choice. These analyses show that certain features attract more route choices than would be expected were individuals choosing route based on cost minimisation alone. Instead, the results indicate that major urban features form the basis of route choice planning ā€“ being selected disproportionately more often, and causing asymmetry in route choice volumes by direction of travel. At a finer scale, decisions made at minor road features are furthermore demonstrated to influence routing patterns. The results indicate a need to revisit the basis of how routes are modelled, shifting from the shortest path perspective to a mechanism structured around urban features. In concluding, the main trends are synthesised within an initial framework for route choice modelling, and presents potential extensions of this research

    Map Generation from Large Scale Incomplete and Inaccurate Data Labels

    Full text link
    Accurately and globally mapping human infrastructure is an important and challenging task with applications in routing, regulation compliance monitoring, and natural disaster response management etc.. In this paper we present progress in developing an algorithmic pipeline and distributed compute system that automates the process of map creation using high resolution aerial images. Unlike previous studies, most of which use datasets that are available only in a few cities across the world, we utilizes publicly available imagery and map data, both of which cover the contiguous United States (CONUS). We approach the technical challenge of inaccurate and incomplete training data adopting state-of-the-art convolutional neural network architectures such as the U-Net and the CycleGAN to incrementally generate maps with increasingly more accurate and more complete labels of man-made infrastructure such as roads and houses. Since scaling the mapping task to CONUS calls for parallelization, we then adopted an asynchronous distributed stochastic parallel gradient descent training scheme to distribute the computational workload onto a cluster of GPUs with nearly linear speed-up.Comment: This paper is accepted by KDD 202

    DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers

    Get PDF
    In this paper, a new method for generating object and action proposals in images and videos is proposed. It builds on activations of different convolutional layers of a pretrained CNN, combining the localization accuracy of the early layers with the high informative-ness (and hence recall) of the later layers. To this end, we build an inverse cascade that, going backward from the later to the earlier convolutional layers of the CNN, selects the most promising locations and refines them in a coarse-to-fine manner. The method is efficient, because i) it re-uses the same features extracted for detection, ii) it aggregates features using integral images, and iii) it avoids a dense evaluation of the proposals thanks to the use of the inverse coarse-to-fine cascade. The method is also accurate. We show that our DeepProposals outperform most of the previously proposed object proposal and action proposal approaches and, when plugged into a CNN-based object detector, produce state-of-the-art detection performance.Comment: 15 page
    • ā€¦
    corecore