2,598 research outputs found

    Connectivity and tree structure in finite graphs

    Get PDF
    Considering systems of separations in a graph that separate every pair of a given set of vertex sets that are themselves not separated by these separations, we determine conditions under which such a separation system contains a nested subsystem that still separates those sets and is invariant under the automorphisms of the graph. As an application, we show that the kk-blocks -- the maximal vertex sets that cannot be separated by at most kk vertices -- of a graph GG live in distinct parts of a suitable tree-decomposition of GG of adhesion at most kk, whose decomposition tree is invariant under the automorphisms of GG. This extends recent work of Dunwoody and Kr\"on and, like theirs, generalizes a similar theorem of Tutte for k=2k=2. Under mild additional assumptions, which are necessary, our decompositions can be combined into one overall tree-decomposition that distinguishes, for all kk simultaneously, all the kk-blocks of a finite graph.Comment: 31 page

    Canonical tree-decompositions of finite graphs I. Existence and algorithms

    Full text link
    We construct tree-decompositions of graphs that distinguish all their k-blocks and tangles of order k, for any fixed integer k. We describe a family of algorithms to construct such decompositions, seeking to maximize their diversity subject to the requirement that they commute with graph isomorphisms. In particular, all the decompositions constructed are invariant under the automorphisms of the graph.Comment: 23 pages, 5 figure

    Weihrauch Reducibility and Finite-Dimensional Subspaces

    Get PDF
    In this thesis we study several principles involving subspaces and decompositions of vector spaces, matroids, and graphs from the perspective of Weihrauch reducibility. We study the problem of decomposing a countable vector space or countable matroid into 1-dimensional subspaces. We also study the problem of producing a finite-dimensional or 1-dimensional subspace of a countable vector space, and related problems for producing finite-dimensional subspaces of a countable matroid. This extends work in the reverse mathematics setting by Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalb´an (2007) and recent work of Hirst and Mummert (2017). Finally, we study the problem of producing a nonempty subset of a countable graph that is equal to a finite union of connected components and the problem of producing a nonempty subset of a countable graph that is equal to a union of connected components that omits at least one connected component. This extends work of Gura, Hirst, and Mummert (2015). We briefly investigate some of these problems in the reverse mathematics setting

    Quantum State Reduction: Generalized Bipartitions from Algebras of Observables

    Get PDF
    Reduced density matrices are a powerful tool in the analysis of entanglement structure, approximate or coarse-grained dynamics, decoherence, and the emergence of classicality. It is straightforward to produce a reduced density matrix with the partial-trace map by tracing out part of the quantum state, but in many natural situations this reduction may not be achievable. We investigate the general problem of identifying how the quantum state is reduced given a restriction on the observables. For example, in an experimental setting, the set of observables that can actually be measured is usually modest (compared to the set of all possible observables) and their resolution is limited. In such situations, the appropriate state-reduction map can be defined via a generalized bipartition, which is associated with the structure of irreducible representations of the algebra generated by the restricted set of observables. One of our main technical results is a general, not inherently numeric, algorithm for finding irreducible representations of matrix algebras. We demonstrate the viability of this approach with two examples of limited-resolution observables. The definition of quantum state reductions can also be extended beyond algebras of observables. To accomplish this task we introduce a more flexible notion of bipartition, the partial bipartition, which describes coarse grainings preserving information about a limited set (not necessarily algebra) of observables. We describe a variational method to choose the coarse grainings most compatible with a specified Hamiltonian, which exhibit emergent classicality in the reduced state space. We apply this construction to the concrete example of the one-dimensional Ising model. Our results have relevance for quantum information, bulk reconstruction in holography, and quantum gravity
    corecore