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ABSTRACT

In this thesis we study several principles involving subspaces and decompositions of vector spaces,

matroids, and graphs from the perspective of Weihrauch reducibility. We study the problem of

decomposing a countable vector space or countable matroid into 1-dimensional subspaces. We also

study the problem of producing a finite-dimensional or 1-dimensional subspace of a countable vector

space, and related problems for producing finite-dimensional subspaces of a countable matroid. This

extends work in the reverse mathematics setting by Downey, Hirschfeldt, Kach, Lempp, Mileti, and

Montalbán (2007) and recent work of Hirst and Mummert (2017). Finally, we study the problem

of producing a nonempty subset of a countable graph that is equal to a finite union of connected

components and the problem of producing a nonempty subset of a countable graph that is equal

to a union of connected components that omits at least one connected component. This extends

work of Gura, Hirst, and Mummert (2015). We briefly investigate some of these problems in the

reverse mathematics setting.

vii



CHAPTER 1

INTRODUCTION

Weihrauch reducibility and reverse mathematics are two frameworks for classifying the logical

strengths of mathematical principles. Weihrauch reducibility, based on computability theory,

involves formalizing mathematical principles as mappings from NN to NN, while reverse

mathematics involves formalizing principles within second-order arithmetic. Our work deals with

the Weihrauch reducibility and reverse mathematics classifications of some mathematical

principles related to dependence. More specifically, we investigate the logical strengths in the two

settings of principles involving the existence of subspaces and decompositions of vector spaces,

graphs, and matroids.

In the following three subsections, we provide brief introductions to computability theory,

Weihrauch reducibility, and reverse mathematics. We then give a brief overview of the main

problems we address in this thesis.

Computability Theory

In this section we will outline some of the basic concepts of computability theory and some results

that are important for the work in this thesis. We state most results without proof. Proofs of all

of the results stated here can be found in a standard reference on computability, such as

Rogers [12]. Computability Theory is the subfield of mathematical logic that studies the

properties of functions that can be computed algorithmically. The first step in this study is to

formally define what it means for a function to be “algorithmically computable”. Informally, an

algorithmically computable function is one whose output on a given input can be determined by a

human or a machine using a finite number of steps – where there is a clearly-defined set of rules

that determines what action is taken at each step, and each rule and each action is mechanical in

nature – using a finite amount of memory or scratch paper, and taking a finite amount of time to

complete. During the 1930’s, several formal models of computation were introduced which were

intended provide a mathematical characterization of those functions that can be algorithmically

computed. The most important of these early models were the λ-calculus introduced by Alonzo
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Church, the Turing machine introduced by Alan Turing, and the theory of µ-recursive functions

introduced by Stephen Cole Kleene. In particular, a Turing machine is a mathematical

description of a simple device that can be physically constructed, making it clear that functions

computable by Turing machine can be mechanically computed by a machine.

It was proved during the 1930s and 1940s that these three and other models of computation

were equivalent, in the sense that a function is computable by one of these models if and only if it

is computable by each of the others. The resulting set of functions characterized by these models

is referred to as the set of computable (or sometimes Turing computable) functions. The

equivalence of these formal models lends support for the Church–Turing Thesis, which says that

any function that is “algorithmically computable” in the informal sense is a computable function,

and vice-versa.

As would be expected from the informal definition of an algorithm, in each model of

computation the formal algorithm that specifies how a function is computed can be described by

a finite string in a finite language. In fact, modern programming languages are “Turing

equivalent”, meaning that the set of functions they can compute is exactly the set of computable

functions. Hence, when thinking of an algorithm for a computable function, one may think of an

implementation of that algorithm in a modern programming language, such as C++, Java, or

Python. Beware that our concept of algorithm assumes that the input and output of an

algorithmically computable function both consist of a finite amount of information. It is for this

reason that computable functions are required to have domain and codomain as the set N of

natural numbers. However, we can also represent functions from and to other countable sets as

computable functions, as long as appropriate codings for the domain and codomain sets are

available.

Because the set of finite strings in a finite language is countable, it follows that there are only

countably many programs. This suggests that each possible program could be encoded by a single

number, and that there could be another program that takes as input a number and computes the

function whose program is specified by the given number. Alan Turing proved the existence of

such a function, which is referred to as a universal function. Suppose that Φ represents the

two-place universal function. Then Φ(e, n) is equal to evaluating the function f that is computed
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by the eth program in the list of all possible programs with natural number n as input.

The reader who has some experience with computer programming may notice that there is an

issue we have overlooked in our description of programs and the universal function: A given

program run with a given input may never produce any output. This situation is often referred to

in computer programming as “entering an infinite loop”. Hence, we say that some computable

functions are partial. To say that a computable function f = Φ(e, ·) is partial means that the set

of input numbers for which program e produces an output is a proper subset of the natural

numbers. We use the notation f(n) ↓ to indicate that f halts on input n and f(n) ↑ to indicate

that f fails to halt on input n. To say that two computable functions f and g are equal means

that, for each n, f(n) ↓ if and only if g(n) ↓, and if f(n) ↓, then f(n) = g(n). If f halts on all

inputs, we say that f is total.

Computable and C.E. Sets

In addition to the computability of functions, computability theory also studies the computability

of sets of natural numbers. We say that a set S ⊆ N is computable if and only if its characteristic

function, i.e., the function χS with χS(n) = 1 if n ∈ S and χS(n) = 0 otherwise, is computable.

There are also sets S which are only half-computable, in the sense that there is a computable

function f which will halt on input n if and only if n ∈ S. These sets are called computably

enumerable sets, and they play an important role in computability theory. We often abbreviate

computably enumerable as c.e. The following theorem justifies the name “computably

enumerable” for these sets:

Theorem 1.1.1 (See [12], Sec. 5.2, Thm. V). A set S ⊆ N is computably enumerable if and only

if there is a total computable function f : N→ N such that S = range(f).

We also have the following important characterization of computable sets in terms of c.e. sets:

Theorem 1.1.2 (See [12], Sec. 5.1, Thm. II). A set S ⊆ N is computable if and only if both S

and Sc = N \ S are c.e.

Given the definitions of computable and computably enumerable sets, the natural question to

ask is whether there exists a set that is of one type but not the other. It is straightforward to
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show that any computable set is computably enumerable. Here is an example of a set that is

computably enumerable but not computable, which was introduced by Alan Turing in 1936 [15].

Let

H := {e : Φ(e, e) ↓},

where Φ is the two-place universal function described above. It is straightforward to show that H

is computably enumerable. If we define h(e) := Φ(e, e), then h halts on input n if and only if

n ∈ H. We will show that H is not a computable set.

Theorem 1.1.3. The set H = {e : Φ(e, e) ↓} is c.e., but not computable.

Proof. Suppose to the contrary that H is computable. Then, Hc = N \H is c.e., so there is some

index e0 such that Φ(e0, ·) halts on n if and only if n ∈ Hc. Now consider the result of running

Φ(e0, e0). If Φ(e0, e0) ↓, then this implies that e0 ∈ H. However, by our choice of the index e0,

this also implies that e0 ∈ Hc, a contradiction. On the other hand, if Φ(e0, e0) ↑, then e0 ∈ Hc, by

the definition of H. But, Φ(e0, e0) ↑ also implies that e0 6∈ Hc, by our choice of e0. Hence, there

can be no such e0, and therefore Hc is not c.e. Hence, H is not computable by Theorem 1.1.2. �

Relative Computability and Turing Degrees

We can also define the concept of relative computability. Suppose that A is any subset of N.

(Notice in particular that we do not require that A is computable.) Assume that we are working

with the Turing machine formalism, so that a given function f : N→ N is computable if and only

if there is a Turing machine program that computes f . We can extend this formalism by adding

another operation to the set of operations that a Turing machine can carry out. This additional

operation, in one step of computation, can answer the question “is n in A?”. In referring to this

extra capability we say that we are given an “oracle” for the set A. We thus get an extended set

of possible programs, which can again be indexed by the natural numbers. If a function f can be

computed in this extended formalism, then we say that f is computable in A or that f is

computable relative to A. This same extension can be carried out in any of the other formal

models of computation.

The set of all possible oracle programs, i.e., programs in the extended formalism, can again be
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enumerated. Hence, there is also a universal function for this extended formalism, denoted

ΦA(·, ·), where ΦA(e, x) indicates the output of oracle program e with input x and oracle set A, if

that output exists. Notice that ΦA(e, x) depends on the three inputs A, e, and x. If we fix only

the program e, then ΦA(e, ·) can be seen as a function mapping each set A ⊆ N to a function

ΦA(e, ·) from N to N. When taking this perspective, we refer to ΦA(e, ·) as a Turing functional.

We say that a set A ⊆ N is Turing reducible to a set B ⊆ N if there is an index e such that the

Turing functional ΦB(e, ·) with oracle set B computes the characteristic function of A. We denote

this relationship by A ≤T B, and we also indicate this relationship by saying that A is computable

from B. It is straightforward to verify that ≤T is a pre-order, i.e., that it is reflexive and

transitive. By taking equivalence classes of subsets of N, where C is equivalent to D if and only if

both C ≤T D and D ≤T C, we obtain a partial order of equivalence classes. These equivalence

classes of sets are referred to as the Turing degrees. We say that a Turing degree A is reducible to

another Turing degree B if and only if A ≤T B for all A ∈ A and B ∈ B. The Turing degree of all

computable sets is denoted ∅.

By relativizing the construction of the set H defined above, we define the set

A′ = {x : ΦA(x, x) ↓}.

This set is called the Turing jump of the set A. It can be shown that A is computable from A′

and that A′ is c.e. relative to A, but A′ 6≤T A. We can iterate the Turing jump of A to obtain the

n-th jump A(n) of A. The iterated Turing jumps ∅(n) play a fundamental role in the relationship

between computability theory and formal arithmetic, as we will see below.

The Arithmetical Hierarchy and Post’s Theorem

The last concepts we will discuss in this section are the arithmetical hierarchy and its relation to

computability theory, which is established by Post’s Theorem. The arithmetical hierarchy is a

system of organizing formulas in first-order arithmetic according to the number of quantifiers and

types of quantifiers they contain, modulo logical equivalence with formulas expressed in a simple

normal form.

Definition 1.1.1. We define the following classifications of formulas in the arithmetical hierarchy:
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1. A formula φ which is logically equivalent to a formula with only bounded quantifiers is

defined to be both Σ0
0 and Π0

0.

2. A formula φ which is logically equivalent to a formula of the form ∃nψ, where ψ is Π0
n, is

defined to be Σ0
n+1.

3. A formula φ which is logically equivalent to a formula of the form ∀nψ, where ψ is Σ0
n, is

defined to be Π0
n+1.

Post’s Theorem shows that there is a close connection between sets which are computable relative

to a jump of the degree ∅ and classifications of sets in the arithmetical hierarchy. Many-one

reduction is a form of reduction among subsets of N that is stronger than Turing reduction.

Theorem 1.1.4 (Post’s Theorem; See [12], Sec. 14.5). The following relationships hold:

1. A set B is Σ0
n+1 if and only if it is c.e. relative to ∅(n).

2. Every Σ0
n set is many-one reducible (and hence Turing reducible) to ∅(n).

Post’s Theorem is particularly important in reverse mathematics. As will be described below,

reverse mathematics involves classifying theorems by formalizing them within second-order

arithmetic. The relationship between computability theory and arithmetic that is established by

Post’s Theorem allows one to use computability-theoretic methods in reverse mathematics.

Weihrauch Reducibility

Weihrauch reducibility is a framework for comparing theorems based on computability. In this

framework, mathematical objects are represented by elements in Baire space, i.e., by functions

from N to N. A theorem is formalized as a mapping from a domain set to a codomain set, referred

to as a Weihrauch principle, and these domain and codomain sets are represented as subsets of

Baire space. Work in Weihrauch reducibility typically deals with relationships between principles

by quantifying over all representations of a given problem. A more detailed description of the

methodology of Weihrauch reducibility is given by Brattka and Gherardi [1] and by Dorais,

Dzhafarov, Hirst, Mileti, and Shafer [3]. In this work we follow the approach of Hirst and

Mummert [8] and do not work directly with representations. We instead identify mathematical
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objects with elements of NN. In this way, we assume that each object has been encoded as a

function in NN and make comparisons between principles involving such functions. This approach

is in line with the approach of reverse mathematics, in which we assume that the mathematical

objects under consideration have been encoded using natural numbers and sets of natural

numbers.

For our purposes, principles in Weihrauch reducibility are given by sets of ordered pairs (A,B),

where A ∈ NN is an instance of a problem and B ∈ NN a solution to the instance A.

Definition 1.2.1. A principle P is said to be Weihrauch reducible to a principle Q if there are

computable functionals Φ and Ψ such that:

1. for each instance A of P , ΦA is an instance of Q, and

2. given a solution B to the instance ΦA of Q, ΨA,B is a solution the instance A of P .

In this case, we write P ≤W Q. If there exists a functional Ψ satisfying (2) that is independent of

the input A, then we say that P is strongly Weihrauch reducible to Q, and we write P ≤sW Q.

The diagram in Figure 1.1 illustrates the relationships of the various parts of a Weihrauch

reduction of a principle P to another principle Q.

IP
P //

Φ(Ip)

��   

SP

IQ
Q
// SQ

Ψ(IP ,SQ)

OO

Figure 1.1: Diagram of the Weihrauch reduction of P to Q.

Intuitively, if P is Weihrauch reducible to Q, then there is a computer program that converts an

instance of P into an instance of Q, and another computer program that converts a solution of Q

into a solution of P .

If P and Q are Weihrauch principles such that each is (strongly) Weihrauch reducible to the

other, then we say that P and Q are (strongly) Weihrauch equivalent.
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Definition 1.2.2. Suppose P and Q are Weihrauch principles. If P is Weihrauch reducible to Q

and Q is Weihrauch reducible to P , then we say that P and Q are Weihrauch equivalent, and we

write P ≡W Q. If P is strongly Weihrauch reducible to Q and Q is strongly Weihrauch reducible

to P , then we say that P and Q are strongly Weihrauch equivalent, and we write P ≡sW Q.

Weihrauch equivalence and strong Weihrauch equivalence are equivalence relations. The

equivalence classes of principles under (strong) Weihrauch equivalence are referred to as the

Weihrauch degrees (respectively, strong Weihrauch degrees). The relation of (strong) Weihrauch

reducibility induces a partial order on the (strong) Weihrauch degrees.

Weihrauch reducibility results in a relatively fine-grained classification of the relationships

between theorems because it requires the existence of functions Φ and Ψ that provide conversions

for all instances A of P and all solutions to ΦA. This independence of Φ and Ψ from particular

instances and solutions is an instance of the general phenomenon of uniformity, which plays an

important role in the study of computability.

In this work we will often speak of a Weihrauch problem as a mapping that takes an element of

NN as input and returns an element of NN as output. Notice that in our definition of a Weihrauch

principle as a set of ordered pairs, we do not require that this set of ordered pairs defines a

function – it may contain pairs (A,B), (A,C) with B 6= C. This will not cause any problems

because all that is required in our use of Weihrauch principles is that the sets B,C satisfy some

particular conditions in relation to A, which depend on the theorem formalized by a particular

Weihrauch principle. In the more formal Weihrauch reducibility setting, this issue is resolved

using realizers, which we will not discuss in depth here.

We state the following definition of the Weihrauch principle LLPO, as given by Brattka and

Gherardi [1]:

Definition 1.2.3. We define LLPO :⊆ NN ⇒ N to be the Weihrauch principle such that if p ∈ NN

with p(n) 6= 0 for at most one n, then

LLPO(p) 3


0 if (∀n ∈ N)p(2n) = 0

1 if (∀n ∈ N)p(2n+ 1) = 0.
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In particular, notice that LLPO(0N) = {0, 1}.

In this definition the expression LLPO :⊆ NN ⇒ N indicates that LLPO takes as input a subset of

all functions in NN and that for a given input p ∈ NN there is actually a set of equally valid

outputs corresponding to the input p. In more formal treatments of Weihrauch reducibility, a

realizer of the problem LLPO would be a function f : dom(LLPO)→ N such that

f(p) ∈ LLPO(p) for all p ∈ dom(LLPO). In other words, a realizer is a section of the relation

given by the set of ordered pairs that defines LLPO. In our simplified presentation of Weihrauch

reducibility we consider LLPO to be the set of all pairs (p, f) where p is in the domain of LLPO,

as defined above, and f is a solution of the input p, also as defined above. However, notice that

the definition above says that a realizer of LLPO gives no information about the input 0N, since a

given realizer may return either 0 or 1 on this input. This fact affects the strength of LLPO in a

nontrivial way. In our version of LLPO, as a set of ordered pairs, we have that (0N, 0) and (0N, 1)

are both in LLPO.

We define several more Weihrauch principles which serve as important landmarks for classifying

theorems in the Weihrauch reducibility setting. The principles CN and WKLW will be

particularly important in the work presented in this thesis.

Definition 1.2.4. Define CN to be the Weihrauch principle that takes as input a nonsurjective

function f : N→ N and returns an element n ∈ N \ range(f).

Definition 1.2.5. Define WKLW to be the principle that takes as input a function f ∈ NN that

encodes an infinite binary tree T (a subset {0, 1}<N such that (1) if σ ∈ T then each initial

segment of σ is also in T , and (2) there is a function f ∈ {0, 1}N such that each finite restriction of

f is in T ) and returns a function function f ∈ {0, 1}N such that any finite restriction of f is in T .

Definition 1.2.6. Define C to be the Weihrauch principle that takes as input a function

f : N→ N and returns the characteristic function χrange(f).

Definition 1.2.7. Define LPO to be the Weihrauch principle that takes as input a function

f : N→ N and returns the characteristic function of a set G ⊆ {0, 1}, such that G = {0} if

0 ∈ range(f) and G = {1} otherwise.
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The following theorem is proved by Brattka and Gherardi [1].

Theorem 1.2.1. WKLW is Weihrauch equivalent to L̂LPO.

Next, we define the parallelization of a Weihrauch principle.

Definition 1.2.8. Given a Weihrauch principle P , the parallelization of P , denoted P̂ is the set

of all sequences {(fn, gn)}n∈N of ordered pairs, where fn is an instance of P and gn is a solution of

fn, for each n.

Brattka and Gherardi [1] mention the following properties of the parallelization operation.

Theorem 1.2.2. Let f and g be multi-valued functions on represented spaces. Then

1. f ≤W f̂ ,

2. f ≤W g =⇒ f̂ ≤W ĝ,

3. and f̂ ≡W
̂̂
f .

Analogous results hold for strong Weihrauch reducibility.

We obtain the following corollary to Theorems 1.2.1 and 1.2.2.

Corollary 1.2.3. WKLW is Weihrauch equivalent to ŴKLW .

Proof. We have WKLW ≡W L̂LPO ≡W
̂̂
LLPO ≡W ŴKLW . �

On the other hand, we have:

Theorem 1.2.4. ĈN, C, and L̂PO are strongly Weihrauch equivalent.

Proof. First we show that C ≤sW L̂PO. Suppose we are given a function f : N→ N. For each n

define gn(m) = 0 if f(m) = n, and gn(m) = 1 otherwise. Then 0 ∈ range(gn) if and only if

n ∈ range(f), and (gn) is an instance of L̂PO. Hence, we can apply L̂PO to obtain a solution h to

(gn), and from h we can compute χrange(f), thus solving the instance f of C.

Now we show that ĈN ≤sW C. Suppose we are given an instance (fn) of ĈN, i.e., that each fn is

a nonsurjective function from N to N. Then, we can use a standard computable bijective encoding
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of pairs to enumerate the set S of pairs of the form (n, fn(m)), where n and m range over all

natural numbers. Then, applying C gives us the characteristic function χS . From χS , for each n

we can compute the least k such that (n, k) 6∈ S, thus solving the instance (fn) of CN.

Finally, we show that L̂PO ≤sW ĈN. Suppose we are given an instance (fn) of L̂PO. From (fn)

we can uniformly compute a sequence of functions (gn) such that gn(m) = 0 if fn(m) = 0 and

gn(m) = m+ 1 otherwise. Then, N \ range(gn) = {0} if 0 6∈ range(fn) and 0 6∈ N \ range(gn) if

0 ∈ range(fn). Hence, we can apply ĈN to (gn) to obtain a solution h, and from h we can

compute a solution to the instance (fn) of L̂PO. �

The following result is mentioned in Brattka and Gherardi [1]:

Theorem 1.2.5. The following relationships hold

LLPO <W LPO |W L̂LPO <W L̂PO,

where |W denotes incomparability in the Weihrauch sense.

By combining the results of Theorems 1.2.1, 1.2.2, 1.2.4, and 1.2.5, we obtain the following result.

Theorem 1.2.6. CN is not Weihrauch reducible to WKLW .

Proof. Suppose that CN ≤W WKLW held. Then by Theorems 1.2.1, 1.2.2, and 1.2.4 we would

have

L̂PO ≡sW ĈN ≤W ŴKLW ≡ L̂LPO,

contradicting the result of Theorem 1.2.5. �

In this section, we have presented several principles that serve as important landmarks in

Weihrauch reducibility, namely the princples CN, LPO, L̂PO, and WKLW . In establishing

relationships between these principles we have demonstrated some basic techniques for proving

relationships in the Weihrauch reducibility setting. The result of Theorem 1.2.6 will be

particularly relevant to our work on classifying the Weihrauch proper subspace principle.
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Reverse Mathematics

In reverse mathematics, we formalize mathematical theorems in the language of second-order

arithmetic, which is a theory in two-sorted first-order logic, with one sort of variables intended to

represent natural numbers and the other sort intended to represent sets of natural numbers. This

two-sorted logic can be interpreted within the usual, one-sorted version of first-order logic, and we

have at our disposal all of the fundamental theorems concerning first-order logic, including

Gödel’s Completeness Theorem, which ensures that a proposition which is true in all models of a

theory is syntactically provable. When working in reverse mathematics, we work with subsystems

of second-order arithmetic, which are subsets of the full set of axioms of second-order arithmetic

along with weakened versions of some axioms of second-order arithmetic and possibly some

additional axioms, and principles, which are represented by additional axioms in the language of

second-order arithmetic. A standard and comprehensive reference for reverse mathematics is

Stephen Simpson’s text Subsystems of Second-Order Arithmetic [13].

Because the only objects in the language of second-order arithmetic are natural numbers and

sets of natural numbers, other mathematical objects that appear in theorems studied in reverse

mathematics must be coded either as natural numbers or as sets of natural numbers. As a

corollary to this fact, in reverse mathematics we may only deal with objects that are countable or

that can be represented by sets of countable objects. For example, any complete, separable metric

space can be represented by a set of countable objects, since each point in such a space can be

represented by a member of an equivalence class of Cauchy sequences with terms in a countable,

dense subset. In contrast, an uncountable, discrete topological space cannot be represented in

second-order arithemtic.

In order to ensure the availability of enough logical tools to complete mathematical proofs, in

reverse mathematics we work over a base system of relatively weak axioms. By this we mean that

there is a particular subsystem – called the base system – that is assumed along with the other

principles and subsystems under consideration, so that implications among subsystems and

principles are obtained relative to this base system. The most common base system for reverse

mathematics is RCA0, which consists of basic arithmetical axioms plus weakened induction and
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comprehension axioms. Most results in reverse mathematics have the form “A implies C over B”,

where A, B, and C are subsystems of second-order arithmetic. The meaning of this statement is

that every model of both A and B is also a model of C. Here the B is the base system. For

example, one result of reverse mathematics says that, assuming RCA0, the principle that “every

vector space has a basis” is equivalent to the subsystem ACA0. It is important that the base

system has the right amount of logical strength. If the base system implies too many nontrivial

results, then the distinctions that can be made between theorems over this base system may be

too coarse. On the other hand, if the base system is too weak, then proofs may become very

laborious or impossible to carry out, or the distinctions made over that system may be too fine.

Many results in reverse mathematics compare mathematical theorems or principles to a set of

subsystems known as the “Big Five” subsystems. These are, in increasing order of strength,

RCA0, WKL0, ACA0, ATR0, and Π1
1-CA0. It has been discovered that a significant number of

the fundamental results of mathematics are equivalent to one of these five principles. There are,

however, some interesting examples in the reverse mathematics literature of principles that are not

equivalent to any of the “Big Five” subsystems. See, for example, the classification of Ramsey’s

Theorem for pairs by Cholak, Jockusch, and Slaman [11]. In this work, all reverse mathematical

results involve comparisons to WKL0 or ACA0, and we always work over the base system RCA0.

Principles Related to Dependence

Most of the principles we study involve the existence of subspaces or decompositions into

subspaces, where the meaning of ‘subspace’ depends on which mathematical dependence structure

the principle refers to. The structures we work with are matroids, graphs, and vector spaces.

Throughout this work we assume that all graphs are simple, meaning that in any graph discussed

here there is at most one edge between any two distinct vertices and there are no self-loops.

Matroids axiomatize a form of dependence between objects that generalizes forms of dependence

that arise in several settings in mathematics, including linear dependence within vector spaces

and connectedness within graphs. With respect to a matroid, a graph, or a vector space one can

define a subspace to be a set that is saturated under the corresponding dependence relation.

Within the graph, vector space, and matroid structures one can also define the concept of a basis,
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and then one can define the dimension of a subspace to be the cardinality of any basis.

Our notion of dependence within a graph is based on connectedness, and as a result a subspace

of a graph in this setting is a union of connected components. There is a large body of work on

graphical matroids, in which a set of vertices is considered to be dependent if it contains a cycle.

The reader may refer to the text by Oxley [10] for an introduction to the study of graphical

matroids. We follow Gura, Hirst, and Mummert [6] in studying dependence within graphs in

terms of connectedness. This study is motivated by the fact that problems pertaining to connected

components in graphs have interesting logical properties, particularly in relation to computability.

The principles studied in this work are related to those studied by Hirst and Mummert [8] and

Gura, Hirst, and Mummert [6]. We are interested in the following general principles, where M

represents a graph, vector space, or matroid:

1. Decomposition into subspaces: Given an object M equipped with a notion of dependence,

there is a decomposition of M into 1-dimensional subspaces.

2. Existence of subspaces: Given an object M equipped with a notion of dependence and with

dimension greater than 1, there exists a nontrivial proper subspace S of M .

3. Existence of finite-dimensional subspaces: Given an object M equipped with a notion of

dependence and with dimension greater than 1, there exists a finite-dimensional nontrivial

proper subspace S of M .

4. Existence of 1-dimensional subspaces: Given an object M equipped with a notion of

dependence and with dimension greater than 1, there exists a 1-dimensional subspace S

of M .

As can be readily seen, a given principle of type (4) will imply the analogous principles of

type (2) and type (3), since within a matroid, a vector space, or a graph with dimension greater

than 1, a 1-dimensional subspace will always be nontrivial and proper. We are interested in

whether the additional specificity in (3) and (4) makes a principle of type (3) or (4) logically

stronger than the analogous principle of type (2) or (3).
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The diagrams in Figures 1.2 and 1.3 show the known relationships between the principles

studied in this work, which include specific instances of the general principles (1)-(4). In these

diagrams, an arrow from a principle A to a principle B indicates that B is reducible to A in the

Weihrauch or reverse mathematics sense, respectively.
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Figure 1.2: Weihrauch reducibility relationships
between principles studied here.
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between principles studied here.
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CHAPTER 2

DECOMPOSITION INTO SUBSPACES

In this section we study strength of the problem of decomposing a matroid into a collection of

1-dimensional subspaces from the Weihrauch reducibility and reverse mathematics perspectives.

Matroid Decomposition

Matroids can be axiomatically defined in several apparently different but equivalent ways. We use

the following definition, which is used by Hirst and Mummert [8] as the basis of their definition of

an e-matroid. In this definition and in the rest of this thesis, given a set S, [S]<N denotes the

collection of all finite subsets of S.

Definition 2.1.1. A matroid is a pair (M,D), where M is a set called the ground set and

D ⊆ [M ]<N is called the set of finite dependent subsets of M , which satisfies the following axioms.

1. The empty set is not dependent: ∅ 6∈ D.

2. Finite supersets of dependent sets are dependent: If A is dependent and B ⊇ A, then B is

also dependent.

3. Independent sets have the exchange property : Suppose that A and B are finite independent

subsets of M and |A| > |B|. Then there is an element x ∈ A \B such that B ∪ {x} is also

independent.

For infinite sets A ⊆M we say that A is dependent if it contains a finite dependent subset, and

that A is independent otherwise.

We define the notions of subspace, span, basis, and dimension for matroids, as well as the sets

of zero and nonzero elements of a matroid.

Definition 2.1.2. If (M,D) is a matroid, we define

Z(M,D) := {x ∈M : {x} ∈ D}
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and refer to Z(M,D) as the set of zero elements of (M,D). We define N(M,D) := M \ Z(M,D),

and refer to N(M,D) as the set of nonzero elements of (M,D).

Whenever the matroid (M,D) that is being considered is clear from context, we will refer to

Z(M,D) using Z and N(M,D) using N .

Definition 2.1.3. If (M,D) is a matroid, we say that a nonempty set S ⊆M is a subspace of

(M,D) if, whenever m ∈M and N ∪ {m} ∈ D for a finite subset N ⊆ S with N 6∈ D, then m ∈ S.

In this case we say that S is saturated under the dependence relation D.

Definition 2.1.4. Suppose (M,D) is a matroid, S ⊆M , and T ⊆ S. We say that T spans S if

for each s ∈ S there is a finite subset N ⊆ T such that N ∪ {s} ∈ D.

Definition 2.1.5. Suppose that (M,D) is a matroid and S ⊆M is a subspace of (M,D). Then

T ⊆ S is a basis for S if T is independent and T spans S.

Definition 2.1.6. If (M,D) is a matroid and S ⊆M is a subspace, then the dimension of S is

the cardinality of any basis for S.

It is straightforward to show that if (M,D) is a matroid and S ⊆M is a subspace, then the pair

(S,E), where E is the collection of sets in D that are subsets of S, is again a matroid. It is also

straightforward to show using the exchange property that all bases for S have the same

cardinality.

The following basic theorem shows that for any matroid (M,D) a decomposition of (M,D) into

1-dimensional subspaces always exists.

Theorem 2.1.1. Every matroid M can be decomposed into a family of 1-dimensional subspaces

such that the intersection of any two of these subspaces is exactly the set Z of zero elements of

(M,D). If M is the matroid obtained from the linear dependence relation of a vector space V ,

then the decomposition obtained is exactly the set of lines through the origin in V .

Proof. Let (M,D) be a matroid. For each x ∈ N , define

Ux := {x} ∪ {y ∈M : {x, y} is dependent}.
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We claim that for any distinct y, z ∈ Ux the set {y, z} is dependent. Suppose to the contrary that

{y, z} is independent. From the definition of Ux it follows that x 6= y and x 6= z. Hence, {y, z} and

{x} are independent sets with |{x}| < |{y, z}|, so by the matroid exchange axiom one of {x, y} or

{x, z} is independent. This contradicts our definition of Ux, so {y, z} must be dependent.

Observe that, because {x, z} is dependent for each z ∈ Z, it follows that Z ⊆ Ux for each

x ∈ N . Now suppose that Ux 6= Uy., and further suppose that {a, b} is dependent for all a ∈ Ux

and b ∈ Uy; then it follows from the definitions of Ux and Uy that Ux = Uy, contradicting our

assumption. Hence, there must be an a0 ∈ Ux and a b0 ∈ Uy such that {a0, b0} is independent.

We now will show that if z ∈ Ux ∩ Uy, then z ∈ Z. Suppose that this is not the case, so that there

is an element z0 ∈ Ux ∩Uy with z0 ∈ N . Now consider the independent sets {a0, b0} and {z0}. We

have |{a0, b0}| > |{z0}|, but {z0} ∪ {t} is dependent for all t ∈ {a0, b0}, contradicting the matroid

exchange axiom. Hence, z0 ∈ Z. Therefore, Ux ∩ Uy ⊆ Z; by our remark above we thus have

Ux ∩ Uy = Z.

Hence, we have shown that M =
⋃
x∈N Ux, and Ux∩Uy = Z for Ux 6= Uy. By definition, each Ux

is 1-dimensional. Hence, {Ux}x∈N gives a decomposition of (M,D) into 1-dimensional subspaces.

It is straightforward to verify that if (M,D) encodes the relation of linear dependence in a vector

space V , then each Ux is exactly the line through the origin in V in the direction of x. �

The following corollary will be useful when proving results about matroids.

Corollary 2.1.2. If (M,D) is a matroid, m,n, k ∈ N , and {m, k} and {n, k} are both dependent,

then {m,n} is also dependent.

Proof. Let {Ux : x ∈M} be a decomposition of (M,D), as in the proof of Theorem 2.1.1. Then,

we have Um ∩ Uk 6= Z and Un ∩ Uk 6= Z, so Um = Un = Uk. Hence, {m,n} is dependent, by the

definition of Um. �

Our goal is to formalize the result of Theorem 2.1.1 and to study its relative strength in the

contexts of Weihrauch reducibility and reverse mathematics. We formalize these results using a

more general structure, called an e-matroid. The dependence structure axiomatized by an

e-matroid generalizes the dependence structures that arise in computable vector spaces and
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graphs, since in each of these cases the collection of finite dependent subsets can be enumerated,

but may not be computable, from the vector space operations or the set of graph edges.

Definition 2.1.7. An e-matroid is a pair (M,D), where M ⊆ N and D is a function from N

to [N]<N, such that the pair (M, range(D)) is a matroid.

It is relatively straightforward to show that, from a countable vector space or a graph with an

enumerated edge set, we can uniformly compute an e-matroid (M,D) that encodes the

dependence structure of that vector space or graph. We include several lemmas that formalize this

statement. To say that we are given a graph G = (V,E) with an enumerated edge set means that

we are given the vertex set V and a function f : N→ E that enumerates the set E of edges of G.

If the matroid (M,D) is computed from a vector space or graph in the way we describe, then

there is a one-to-one correspondence between subspaces of (M,D) and subspaces of the original

vector space or graph, and a decomposition of (M,D) into 1-dimensional subspaces will give a

decomposition of the initial vector space or graph into 1-dimensional subspaces. Hence, in

obtaining classification results about decompositions of e-matroids we obtain as corollaries upper

bounds for the strenghts of related principles involving countable vector spaces and graphs with

enumerated edge sets.

The following lemma shows that we can computably turn a graph with an enumerated edge set

into an e-matroid. We require that the graph (V,E) in this lemma has at least one edge, else

there would be no dependent sets to enumerate.

Definition 2.1.8. Suppose that G = (V,E) is a graph. Then, we define a finite set A ⊆ V to be

dependent if A contains two distinct vertices that lie in the same connected component of G.

Lemma 2.1.3. Given a simple graph G = (V,E), where V ⊆ N and E is nonempty and given as

an enumeration, there exists an enumeration of the finite dependent subsets of G which is

uniformly computable from G.

Proof. Let f : N→ E be an enumeration of E, and let g be an enumeration of [N]<N. Suppose

that {m0, n0} = f(0). A pair of vertices (s, t) is in the same connected component iff there is a

finite path connecting s to t consisting of vertices in E. Hence, we can enumerate such pairs by
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the following procedure: Suppose g(n) codes the set {x0, . . . , xk}. Check if the set of edges

{f(x0), . . . , f(xk)} is exactly the set of edges in some (non-closed) finite path. If so, then let h(n)

equal the code for {s, t}, where s is initial vertex and t is the final vertex in this path. If not, then

let h(n) equal the code for {m0, n0}. It is straightforward to show that h is computable.

Now let ϕ be a computable bijective pairing function. We can use the following procedure to

enumerate all of the finite dependent sets of vertices in V . Suppose ϕ(n) = (s, t). Let As be the

intersection of V with the set coded by h(s). Let ψ(n) be the (code of the) union As and the set

coded by g(t). It is straightforward to show that each set in this enumeration contains a pair of

connected vertices, and if a finite set contains a pair of connected vertices it is included in this

enumeration. �

The collection of dependent sets in the above lemma satisfies the matroid axioms. Further, the

subspaces of the matroid obtained from a graph G using Lemma 2.1.3 are exactly the unions of

connected components of G. Hence, we have the following lemma.

Lemma 2.1.4. If G = (V,E) is a graph, where V ⊆ N and E is nonempty and given as an

enumeration, then from G we can uniformly compute an e-matroid (M,D) such that M = V and,

for A ∈ [M ]<N, A ∈ D if and only if A contains two distinct path-connected vertices of G.

Further, a subset S ⊆ V is a subspace of (M,D) if and only if it is equal to a union of connected

components in G.

Proof. It is straightforward to verify that, if ψ is the enumeration of dependent sets of the graph

G = (V,E) given in the proof of Lemma 2.1.3, then (V, ψ) is an e-matroid. We verify the third

matroid axiom here. Assume that A,B are subsets of V with |A| > |B| and that neither A nor B

contains a pair of vertices connected by a path in G. Suppose that each a ∈ A is connected by a

path to some element of B. Then by the Pigeonhole Principle there must be some vertex b0 in B

that is connected by a path to two distinct vertices in A. This contradicts the fact that A is

independent, and hence there must be an a0 ∈ A such that B ∪ {a0} is dependent.

To verify the second claim we only need to apply the definitions of connected component and

matroid subspace. Observe that S ⊆ V is a subspace of (M,D) if and only if whenever v ∈ V and

N ∪ {v} is dependent for some finite N ⊆ S then v ∈ S. This says exactly that whenever v is
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connected by a path in G to a vertex in N ⊆ S then v is already in S, which is equivalent to

saying that S is union of connected components. �

Weihrauch Perspective

The following Weihrauch principle formalizes the notion of a decomposition of an e-matroid into

1-dimensional subspaces. The definition of an e-matroid decomposition given here generalizes the

definition of a decomposition of a graph into connected components given by Hirst [7].

Definition 2.2.1. We define DM to be the principle that, given an e-matroid (M,D), produces a

decomposition of (M,D) into 1-dimensional subspaces, which is a function f : M → N such that

1. if n ∈ Z then f(n) = 0,

2. if n ∈M \ Z, then f(n) > 0,

3. if n,m ∈M \ Z and m 6= n, then f(n) = f(m) if and only if {n,m} is dependent.

We define WDM to be the principle that, given an e-matroid (M,D), produces a weak

decomposition of (M,D) into 1-dimensional subspaces, which is a function f : M → N that

satisfies condition (3).

We now show that WDM ≡sW DM ≡sW L̂PO. To do so, we first show that L̂PO is equivalent to

the Weihrauch principle DEPW , which takes as input an e-matroid and returns as output the

characteristic function for its set of finite dependent sets. This is the Weihrauch equivalent of

Theorem 7 of Hirst and Mummert [8].

Definition 2.2.2. We define DEPW to be the Weihrauch principle given by the set of pairs

((M,D), χrange(D)), were (M,D) is an e-matroid, and χrange(D) is the characteristic function

for range(D).

Theorem 2.2.1. DEPW is strongly Weihrauch equivalent to L̂PO.

Proof. (L̂PO ≤sW DEPW .) Suppose the sequence of functions gn : N→ N constitutes an instance

of L̂PO. Now let E be the collection of 2-element sets of ordered pairs of the form

{(n, k), (n, k + 1)} for each n, k ∈ N and {(0, 0), (j + 1, k)} for each j, k such that gj(k) = 0. It is
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straightforward to show that E is computable from the sequence (gn). Let V = N× N, and

observe that the pair (V,E) is a computable graph.

Now apply Lemma 2.1.4 to obtain an e-matroid (M,D) with M = V and D corresponding to

finite subsets of V containing pairs of vertices that are connected in (V,E). Apply DEPW to

(M,D) to obtain the characteristic function χrange(D). Observe that, in the graph (V,E), (0, 0)

and (n+ 1, 0) are in the same connected component if and only if (∃k)[gn(k) = 0]. Hence, we can

compute a solution ψ to the instance (gn) of L̂PO from χrange(D) as follows. To compute ψ(n),

first compute χrange(D)((0, 0), (n+ 1, 0)), then subtract the result from one.

(DEPW ≤sW L̂PO.) Let (M,D) be an e-matroid. Let g be an enumeration of [N]<N. For each

m ∈ N define the function fm : N→ {0, 1} by

fm(n) :=


0, if D(n) = g(m),

1, otherwise.

Observe that (fm) constitutes an instance of L̂PO and that 0 ∈ range fm if and only if the finite

set g(m) is a dependent subset of M . Hence, if h is a solution to the instance (fm) of L̂PO, then

χrange(D) := 1− h. �

We now apply Theorem 2.2.1 to show that WDM ≡sW DM ≡sW L̂PO. Notice that in the proof

that L̂PO ≤sW WDM we make use of the fact that a graph has no “zero” elements according to

our definition of dependence. This fact allows us to obtain a connected component from a weak

decomposition.

Theorem 2.2.2. The principles WDM, DM, and L̂PO are strongly Weihrauch equivalent.

Proof. (DM ≤sW L̂PO) Suppose we are given an e-matroid (M,D) with M = N. Apply

DEPW ≡sW L̂PO to obtain the characteristic function χrange(D). Now, define a function

f : M → N by

• f(m) = 0 if m ∈ Z;

• if m ∈M \ Z and {m,n} is independent for all n < m with n ∈M \ Z, then f(m) = m+ 1;
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• if m ∈M \ Z and there exists a least n0 < m such that n0 ∈M \ Z and {m,n0} is

dependent, then f(m) = n0 + 1.

Observe that f is computable from χrange(D). It is straightforward to verify that f satisfies

conditions (1) and (2) in Definition 2.2.1.

We show that f also satisfies (3). Suppose that m,n ∈M \ Z with m < n, and

f(n) = f(m) = k + 1 ≤ m+ 1. If k = m, then by the definition of f it must be the case that

{m,n} is dependent. If k < m, then by the definition of f both {m, k} and {n, k} are dependent,

and so by an application of Corollary 2.1.2 to the e-matroid (M, range(D)) we see that {m,n} is

dependent in this case as well.

Now suppose that m,n 6∈ Z with m < n, and that {m,n} is dependent. It follows from

Corollary 2.1.2 that, for k 6∈ {m,n} and k 6∈ Z, {n, k} is dependent iff {m, k} is dependent. From

the definition of f we see that if f(m) = m+ 1, then m is the least nonzero t < n with {t, n}

dependent, so f(n) = m+ 1 = f(m). On the other hand, if f(m) = k + 1 < m+ 1, then k is the

least nonzero t < m < n such that {m, t} is dependent. Then, {n, t} will also be dependent, so

f(n) = k + 1 also. Hence, f satisfies condition (3), so f is a decomposition of (M,D) into

1-dimensional subspaces.

If M 6= N, then we can utilize the above construction by first encoding the membership relation

for M into the dependence relation D. One way of doing this is to encode the elements of M using

the odd natural numbers, and then to use the even natural numbers to encode another matroid

structure in which {0, 2k} is dependent if and only if k ∈M . This will result in a new e-matroid

(M ′, D′). Then, it is straightforward to compute the functions χM and χrange(D) from χrange(D′).

(WDM ≤sW DM) This follows directly from the definitions of DM and WDM.

(L̂PO ≤sW WDM) By Theorem 6.4 of Gura, Hirst, and Mummert [6], the principle DG saying

that a countable graph can be decomposed into its connected components is strongly Weihrauch

equivalent to L̂PO. If we are given a countable graph G = (V,E), as in Lemma 2.1.4 we can

compute an e-matroid (M,D) from G, in which the finite dependent sets are exactly the finite

subsets S ⊆ V such that there are distinct elements u, v ∈ S that are connected by a path in G.

Hence, a decomposition of (M,D) into 1-dimensional subspaces is exactly a decomposition of G

into connected components. Moreover, the weak decomposition of Definition 2.2.1 specializes to
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the decomposition defined by Gura, Hirst, and Mummert [6] whenever (M,D) is obtained from

the path-connectedness relation on a graph. Hence, DG is strongly Weihrauch reducible to WDM,

so L̂PO is also strongly Weihrauch reducible to WDM. �

Reverse Mathematics Perspective

In this section we consider e-matroid decompositions from the reverse mathematics perspective.

We formalize an e-matroid in second-order arithmetic as a pair (M,D), where M is a subset of N

and D is a function from N to [M ]<N whose range is the collection of finite dependent subsets

of M .

Definition 2.3.1. We define DM to be the second-order arithmetic formalization of the principle

“every e-matroid has a decomposition into 1-dimensional subspaces”. Formally, we define a

1-dimensional decomposition of an e-matroid (M,D) to be a function f : M → N such that

1. n ∈ Z ⇔ f(n) = 0,

2. and n,m 6∈ Z ∧m 6= n⇒ (f(n) = f(m)⇔ (∃k)D(k) = {n,m}),

where Z = {m ∈M : (∃n)[D(n) = {m}]}.

We define WDM to be the formalization of the principle “every e-matroid has a weak

decomposition into 1-dimensional subspaces”, where a weak decomposition of an e-matroid

(M,D) into 1-dimensional subspaces is a function f : M → N that satisfies condition (2).

The following theorem gives the reverse mathematics classifications of WDM and DM.

Theorem 2.3.1. The subsystems WDM and DM are equivalent to ACA0 over RCA0.

Proof. It is straightforward to show that ACA0 implies DM, and it follows from the definitions

that DM implies WDM. We show that WDM implies the principle that every graph has a

connected component. If we are given a graph G = (V,E), then application of an instance of

∆0
1-comprehension with parameter G shows that there exists an e-matroid (M,D), where M = V

and D is an enumeration of the set of all finite subsets of G containing a pair of distinct,

path-connected vertices. Now apply WDM to obtain a weak decomposition f of (M,D) into

24



1-dimensional subspaces. Since (M,D) has no zero elements, f is a decomposition of (M,D) into

1-dimensional subspaces. Hence, a 1-dimensional subspace of V is given by the set

S := {v ∈ V : f(v) = i},

where i is in the range of f . The set S exists by ∆0
1 comprehension with parameter f . It is

straightforward to verify that S is a connected component of G. In Theorem 2.1, Gura, Hirst, and

Mummert [6] show that the principle “every graph has a connected component” is equivalent to

ACA0 over RCA0. Hence, WDM implies ACA0 over RCA0. �
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CHAPTER 3

EXISTENCE OF SUBSPACES OF VECTOR SPACES

In this section we examine the strengths of principles involving the existence of subspaces of

countable vector spaces.

Countable Vector Spaces

We begin with a definition of a countable vector space, which is based on the definition given by

Metakides and Nerode [9].

Definition 3.1.1. A countable vector space V over an infinite computable field F is a tuple

(|V | ,≡V ,+, ·, 0V ) consisting of

1. a set of vectors |V | = N,

2. a function +: N× N→ N which represents vector space addition,

3. a function · : F× N→ N which represents scalar multiplication,

4. an element 0V ∈ |V | that is an identity for +,

5. and an equivalence relation ≡V⊆ N2, which represents equality in V ,

such that
(
|V | / ≡V ,+, ·, 0V

)
is a vector space over F.

In this definition we could have allowed |V | to be any countably infinite set. However, in this

case there would be a uniformly computable bijection between N and |V |, and we would gain no

additional generality. Specifically, if Φ is a computable functional such that ΦA(k) is the k-th

smallest element of A, if such an element exists, then Φ|V | is a bijective enumeration of |V |

whenever |V | ⊆ N is an infinite set. Hence, we assume that |V | = N. If |V | and F were finite, then

all questions about V would be answerable by exhaustive computation. Also notice that we can

take ≡V to be normal equality with no loss of generality by representing each vector by the least

element of its equivalence class under ≡V and requiring that each operation returns the least
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representative of its result. There is no loss of generality in this case because finding a least

representative is uniformly computable from ≡V .

We define the following Weihrauch and reverse mathematics principles which assert the

existence of subspaces of countable vector spaces of dimension greater than 1.

Definition 3.1.2. Let PS denote the formalization in second-order arithmetic of the principle

“every vector space of dimension greater than 1 has a nontrivial proper subspace”, where

“dimension greater than 1” is formalized as “there exist two linearly independent vectors”.

Let PSW be the Weihrauch principle that takes as input a countable vector space of dimension

greater than 1 and returns a nontrivial proper subspace.

Definition 3.1.3. Let L denote the formalization in second-order arithmetic of the principle

“every vector space of dimension greater than 1 has a 1-dimensional subspace”, where “dimension

greater than 1” is formalized as “there exist two linearly independent vectors”.

Let LW be the Weihrauch principle that takes as input a countable vector space of dimension

greater than 1 and returns a 1-dimensional subspace.

The next theorem follows directly from the definitions.

Theorem 3.1.1. L implies PS over RCA0. PSW is strongly Weihrauch reducible to LW .

Weihrauch Perspective

The following lemma is the vector space equivalent of Lemma 2.1.4, and can be proven by a

similar procedure in which finite subsets of |V | and linear combinations of vectors are

simultaneously enumerated.

Lemma 3.2.1. Given a computable vector space V , we can uniformly compute from V an

e-matroid (M,D) with M = |V | and D the collection of finite linearly dependent subsets of V .

Further, the subspaces of (M,D) are exactly the subspaces of V .

We can apply this lemma to obtain the following upper bound for LW .

Theorem 3.2.2. LW is strongly Weihrauch reducible to L̂PO.
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Proof. Suppose we are given a countable vector space V of dimension greater than 1. Apply

Lemma 3.2.1 to obtain an e-matroid (M,D) computable from V . Apply DM ≡sW L̂PO to obtain

a decomposition f of (M,D) into 1-dimensional subspaces, and suppose t ∈ range(f). Now define

v ∈ S if and only if f(v) ∈ {0, t}. Observe that S is a 1-dimensional subspace of V that is

computable from f . �

We now consider the Weihrauch classification of PSW . In the proof of Theorem 3.2.6 we adapt

a construction given by Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4] in the

context of computability to produce a Weihrauch reduction. This proof makes use of several

lemmas from linear algebra. We adapt the statements and proofs of these lemmas from those

given by Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4]. Theorem 3.2.6 shows

that we can reduce the principle SEP, which produces a separating set for two disjoint

enumerated sets, to the principle PSW .

Definition 3.2.1. We define SEP to be the Weihrauch principle that takes as input two functions

f, g : N→ N with range(f) ∩ range(g) = ∅ and returns as output a set S such that range(f) ⊆ S

and range(g) ∩ S = ∅. The set S is referred to as a separating set for range(f), range(g).

Definition 3.2.2. Let V be a vector space and let X ⊆ V . We let 〈X〉 denote the span of X

in V . Given v ∈ V and a basis B for V , let supp(v) denote the support of v with respect to the

basis B, which is set of vectors that appear with nonzero coefficients in the expansion of v as a

linear combination of vectors in B.

Suppose that V is a vector space and that X ⊆ V . Let [v] denote the equivalence class of v ∈ V

in the quotient space V/〈X〉. A subset B ⊆ V spans V over 〈X〉 if the set {[b] : b ∈ B} spans

V/〈X〉. It is straightforward to show that this is equivalent to the condition that each v ∈ V is

equal to a sum of the form α1b1 + . . .+ αnbn + x, where b1, . . . , bn ∈ B, α1, . . . , αn are scalars, and

x ∈ 〈X〉. By definition, the subset B ⊆ V is linearly independent if α1[b1] + . . .+ αn[bn] = [0]

implies that α1 = 0, . . . , αn = 0. An equivalent condition is that α1b1 + . . .+ αnbn ∈ 〈X〉 implies

that α1 = 0 . . . , αn = 0. In the following proofs it will be more convenient to use these alternative

conditions for linear independence and span in V/〈X〉.
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Lemma 3.2.3. Suppose that V is a vector space, that X ⊆ V , that {v, w} is linearly independent

over 〈X〉, and that u 6∈ 〈X〉. Then there exists at most one λ such that u ∈ 〈X ∪ {v − λw}〉.

Proof. Suppose that u ∈ 〈X ∪ {v− λ1w}〉 and u ∈ 〈X ∪ {v− λ2w}〉. Fix scalars µ1, µ2 and vectors

x1, x2 ∈ 〈X〉 such that u = µ1(v − λ1w) + x1 and u = µ2(v − λ2w) + x2. Notice that µ1, µ2 6= 0,

since u 6∈ 〈X〉. Then, we have

(µ1 − µ2)v + (µ2λ2 − µ1λ1)w = x2 − x1 ∈ 〈X〉.

Hence, since {v, w} is linearly independent over 〈X〉, it follows that µ1 − µ2 = 0 and

µ2λ2 − µ1λ1 = 0. Since µ1 = µ2 6= 0, it follows that λ1 = λ2. �

Lemma 3.2.4. Suppose that V is a vector space, that X ⊆ V , and that B is a basis for V over

〈X〉 that is linearly ordered by ≺. Suppose that

1. v ∈ V ,

2. e ∈ B,

3. λ is a nonzero scalar,

4. e � max(supp(v)).

Then B \ {e} is a basis for V over 〈X ∪ {e− λv}〉 and, for all w ∈ V ,

max(suppB\{e}(w + 〈X ∪ {e− λv}〉)) � max(suppB(w)).

Proof. Notice that e ∈ 〈(B \ {e})∪X ∪ {e− λv}〉, because e 6∈ supp(v) and B is a basis for V over

〈X〉. Hence, B \ {e} spans V over 〈X ∪ {e− λv}〉. Now suppose that e1, e2, . . . , en ∈ B \ {e} are

distinct and µ1, µ2, . . . , µn are scalars such that

µ1e1 + µ2e2 + . . .+ µnen ∈ 〈X ∪ {e− λv}〉.
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Fix a scalar µ and a vector x ∈ 〈X〉 such that

µ1e1 + µ2e2 + . . .+ µnen − µ(e− λv) = x ∈ 〈X〉.

Notice that µ = 0 must hold, because the coefficient of e on the left-hand side is µ, and the

vectors e1, . . . , en, e are linearly independent over X, by assumption. Thus, the µi’s must also

each be 0, because B is a basis over 〈X〉. Therefore B \ {e} is a basis for V over 〈X ∪ {e− λv}〉.

The last line of the theorem now follows by hypothesis 4. �

Lemma 3.2.5. Suppose that V is a vector space, that X ⊆ V , and that B is a basis for V over

〈X〉 that is linearly ordered by ≺. Suppose that

1. v1, v2 ∈ V ,

2. e1, e2 ∈ B with e1 6= e2,

3. λ is a scalar,

4. e1 � max(supp(v1) ∪ supp(v2)),

5. {v1, e1} is linearly independent over 〈X〉,

6. v1 6∈ 〈X ∪ {e2 − λv2}〉.

Then {v1, e1} is linearly independent over 〈X ∪ {e2 − λv2}〉.

Proof. Suppose that µ1v1 + µ2e1 ∈ 〈X ∪ {e2 − λv2}〉, so that

µ1v1 + µ2e1 − µ3(e2 − λv2) = x ∈ 〈X〉,

for some scalar µ3 and x ∈ 〈X〉. We need to show that µ1 = µ2 = 0.

Case 1: e1 ≺ e2. In this case the coefficient of e2 on the left-hand side is µ3, so we must have

µ3 = 0. Hence, µ1v1 +µ2e1 ∈ 〈X〉, and µ1 = µ2 = 0 since {v1, e1} is linearly independent over 〈X〉.

Case 2: e1 � e2. In this case, the coefficient of e1 on the left-hand side is µ2, so µ2 = 0. Then,

µ1v1 − µ3(e2 − λv2) ∈ 〈X〉. Since v1 6∈ 〈X ∪ {e2 − λv2}〉, µ1 = 0. Hence {v1, e1} is linearly

independent over 〈X ∪ {e2 − λv2}〉. �
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With these lemmas established, we give the following proof, which is adapted directly from

Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4]. We make no significant changes to

the proof as it is presented by the original authors, adding only some additional commentary to

verify that the constructions given in this proof are uniformly computable from the input

functions f and g.

Theorem 3.2.6. SEP is Weihrauch reducible to PSW .

Proof. Suppose we are given an instance of SEP, which is a pair of functions f, g from N to N

such that range(f)∩ range(g) = ∅. To solve this instance of SEP, we need to produce a set S such

that range(f) ⊆ S and range(g) ∩ S = ∅. We will reduce this problem to that of producing a

nontrivial proper subspace of a countable vector space in two steps. First, we describe a

procedure that takes f and g as input parameters and constructs a vector space V . Then, we

describe a procedure that, given f , g, and a proper subspace W of V as parameters, computes

from W a separating set S for range(f) and range(g).

To begin, let V∞ be the vector space over Q generated by the countable basis e0, e1, . . . with

the ordering ei ≺ ej if and only if i < j. Here ei is the vector that has a 1 in its ith component

and a 0 in all other components. Let v0, v1, . . . be a computable enumeration of V∞, and assume

that v0 is the zero vector of V∞. Using this enumeration, we can computably go back and forth

between vi and a code for its expansion in terms of the basis {ei}i∈N. Let supp(vi) be the set of

basis elements that have nonzero coefficients when vi is expressed as a linear combination of basis

elements ej . Now let φ : N3 → N be a computable injective function such that

eφ(i,j,n) � max{supp(vi) ∪ supp(vj)} for each i, j, n. It is straightforward to show that such a

function φ exists.

Part 1, constructing the vector space V :

Construction:

We construct a subspace U of V∞ by computing an increasing sequence U2, U3, U4, . . . of finite

subsets of V and setting U =
⋃
n≥2 Un. We define a set of requirements Ri,j,n to be satisfied by all

pairs vi, vj 6∈ U . The requirement Ri,j,n says that the following hold, where vi, vj 6∈ U :
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Requirement Ri,j,n:

1. If n 6∈ range(f) ∪ range(g), then each of {vi, eφ(i,j,n)} and {vj , eφ(i,j,n)} are linearly

independent over U .

2. If n ∈ range(f), then eφ(i,j,n) − λvi ∈ U for some nonzero λ ∈ Q.

3. If n ∈ range(g), then eφ(i,j,n) − λvj ∈ U for some nonzero λ ∈ Q.

Define h : N4 → {0, 1} to be such that h(i, j, n, s) = 1 if and only if we have acted to satisfy

requirement Ri,j,n at some stage t ≤ s, during which we constructed Ut. This construction will

ensure that vk ∈ U if and only if vk ∈ Uk, for each k ≥ 2. Since each Uk is computable by our

procedure, this will ensure that U is also computable.

Set U2 = {v0} and h(i, j, n, s) = 0 for all i, j, n, s with s ≤ 2. Now suppose that s ≥ 2 and that

we have defined Us and h(i, j, n, s) for all i, j, n. Suppose that for any i, j, n such that vi, vj 6∈ 〈Us〉

the following are satisfied:

1. If h(i, j, n, s) = 0, then each of {vi, eφ(i,j,n)} and {vj , eφ(i,j,n)} is linearly independent over

〈Us〉.

2. If h(i, j, n, s) = 1:

(a) If n ∈ f({1, . . . , s}), then eφ(i,j,n) − λvi ∈ Us for a nonzero λ ∈ Q.

(b) If n ∈ g({1, . . . , s}), then eφ(i,j,n) − λvj ∈ Us for a nonzero λ ∈ Q.

Notice that, because Us is finite and we can compute the coefficients of the expansion of each vk

in terms of basis elements, from the index k, then we can compute the characteristic function of

〈Us〉, using Gaussian elimination, for example. Assume throughout the rest of the proof that we

have a fixed, effective, bijective coding c : N3 → N of triples such that m ≤ c(i, j, k) for each

m ∈ {i, j, k}. To compute Us+1, first check whether there exists a triple (i, j, n) with code less

than s such that the following condition holds:

Condition A:

1. vi, vj 6∈ 〈Us〉.
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2. n ∈ f({1, . . . , s}) ∪ g({1, . . . , s}).

3. h(i, j, n, s) = 0.

First suppose that no such triple (i, j, n) exists. If vs+1 ∈ 〈Us〉, then set Us+1 = Us ∪ {vs+1};

otherwise let Us+1 = Us. Also let h(i, j, n, s+ 1) = h(i, j, n, s) for all i, j, n.

Now suppose that there is a least triple (i, j, n) < s satisfying requirements (1) through (3) of

condition A. Next:

• If n ∈ f({1, . . . , s}), then search for the least λ ∈ Q (we assume a fixed effective encoding of

Q) such that vk 6∈ 〈Us ∪ {eφ(i,j,n) − λvi}〉 for all k ≤ s with vk 6∈ 〈Us〉. Such a λ ∈ Q is

guaranteed to exist by Lemma 3.2.3 and the fact that Q is infinite. Let

U ′s = Us ∪ {eφ(i,j,n) − λvi} and let h(i, j, n, s+ 1) = 1. If vs+1 ∈ 〈U ′s〉, then set

Us+1 = U ′s ∪ {vs+1}; otherwise set Us+1 = U ′s.

• If n ∈ g({1, . . . , s}), then search for the least λ ∈ Q such that vk 6∈ 〈Us ∪ {eφ(i,j,n) − λvj}〉 for

all k ≤ s with vk 6∈ 〈Us〉. Let U ′s = Us ∪ {eφ(i,j,n) − λvj} and let h(i, j, n, s+ 1) = 1. If

vs+1 ∈ 〈U ′s〉, then set Us+1 = U ′s ∪ {vs+1}; otherwise set Us+1 = U ′s.

Verification:

It follows directly from our construction that part (2) of the induction hypothesis is

maintained. To verify that part (1) of the induction hypothesis is maintained, suppose that

Us+1 = Us ∪ {eφ(i,j,n) − λvi}. Suppose that vk 6∈ 〈Us+1〉, that (k, l,m) 6= (i, j, n), and that

{vk, eφ(k,l,m)} is linearly independent over 〈Us〉. We will show that {vk, eφ(k,l,m)} is also linearly

independent over 〈Us+1〉. Suppose that Us = {v0, vj1 , . . . , vjm , ei1 − λ1vk1 , . . . , ein − λnvkn}. By

our construction, the vectors T = {v0, vj1 , . . . , vjm} are all in the span of Us \ T , so we can ignore

these vectors. Hence, by repeated application of Lemma 3.2.4, B := {e1, e2, . . .} \ {ei1 , . . . , ein} is

a basis for V over 〈Us〉. Now, if {vk, eφ(k,l,m)} is linearly dependent over 〈Us+1〉, then there exist

coefficents α, β, δ with δ 6= 0 and α and β both not zero such that

(αeφ(k,l,m) + βvk) + δ(eφ(i,j,n) − λvi) ∈ 〈Us〉.

Suppose that eφ(k,l,m) ≺ eφ(i,j,n). Then, by the definition of φ we have
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eφ(i,j,n) � max(supp(vk) ∪ supp(vi)). Hence, if we expand (αeφ(k,l,m) + βvk) + δ(eφ(i,j,n) − λvi) in

terms of the basis B, then the coefficient of eφ(i,j,n) in this expansion must be zero. But, this

coefficient is δ, which we assumed to be nonzero.

Now suppose that eφ(k,l,m) � eφ(i,j,n). In this case all of the hypotheses of Lemma 3.2.5 are met;

hence, we can apply Lemma 3.2.5 to show that {vk, eφ(k,l,m)} is linearly independent over 〈Us+1〉,

contradicting our assumption. Hence, {vk, eφ(k,l,m)} must be linearly independent over 〈Us+1〉.

The proof will be nearly identical if instead Us+1 = Us ∪ {eφ(i,j,n) − λvj}. Hence, part (1) of our

induction hypothesis is maintained.

In the construction of Us+1 we have ensured that, if k ≤ s and vk 6∈ 〈Us〉, then vk 6∈ 〈Us+1〉 also.

This ensures that, if vk enters the span of U , then it does so at a stage s ≤ k. The construction

also ensures that, if vk enters the span of U at a stage s ≤ k, then vk will be added to Uk−1 in the

construction of Uk during stage k. Hence, the set U =
⋃
s Us is closed under taking linear

combinations, so it is a subspace of V∞. As described above, U is computable.

It remains to verify that the requirements Ri,j,n are satisfied for each (i, j, n) with vi, vj 6∈ U .

To verify this, choose (i, j, n) such that vi, vj 6∈ U . Notice that this implies that vi, vj 6∈ Us for

each s. If n 6∈ range(f) ∪ range(g), then our induction hypotheses ensure that {vi, eφ(i,j,n)} and

{vj , eφ(i,j,n)} are linearly independent over 〈Us〉 for each s, so each of these sets is also linearly

independent over U . Hence, Ri,j,n is satisfied in this case. Now suppose that f(i0) = n. Then, at

some stage s ≥ i0 the triple (i, j, n) will satisfy condition A. The triple (i, j, n) will then continue

to satisfy condition A for t ≥ s until at some stage s0 ≥ i0, (i, j, n) is the least triple that satsifies

condition A. At stage s0 we will act to satisfy requirement Ri,j,n. Because our induction

hypotheses are maintained, this ensures that Ri,j,n is satisfied for U . The case is similar if

g(i0) = n for some i0. Hence, the requirements Ri,j,n are satisfied.

Now define V = V∞/U . V is a computable vector space over Q: the equivalence relation ≡V

defined by x ≡V y iff x− y ∈ U is computable because V∞ and U are both computable. We can

represent each equivalence class [x] under ≡V by the least element of [x] according to the

enumeration of vectors in V∞. This representation is computable, and the modifications of the

operations on V∞ so that they return least representatives of equivalence classes under ≡V are

also computable. By our construction {v1, eφ(1,2,n)} is linearly independent over U for any
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n 6∈ range(f) ∪ range(g), so V is has dimension at least two. Hence, V is an instance of PSW .

Notice that throughout this construction so far, the input functions f and g have been treated

as oracles, with each step of the construction accessing finitely many output values for f or g.

Hence, this construction is uniform in the input functions f and g, and the construction

constitutes the first half of a Weihrauch reduction of SEP to PSW .

Part 2, computing a separating set from a subspace of V :

Now suppose we apply PSW to V to obtain a nontrivial proper subspace W of V . Then, from

W we can compute a subspace W0 of V∞ such that U ⊂W0 ⊂ V∞ and W = W0/U . Suppose we

have access to the original instance of SEP, which is to say the functions f and g. From f and g

we can compute U and V = V∞/U , just as in the first part of the reduction. Recall that elements

of V are coded by least representatives of equivalence classes of V∞ over U . Hence, to check if

x ∈ V∞ is in W0, we only have to compute the least representative of the equivalence class [x] and

determine whether or not it is in W . Hence, W0 is computable from f , g, and W .

Now fix vi, vj ∈ V∞ such that vi ∈W0 and vj 6∈W0. Such vectors exist, because U ⊂W0 ⊂ V∞

and both inclusions are proper, and can be obtained from W0 by enumerating and checking

finitely many vectors in V∞. Now define S := {n : eφ(i,j,n) ∈W0}. Observe that S is computable

from W0, because each element of V∞ is represented by the finite set of nonzero coefficients in its

representation as a linear combination of basis elements ek. Further, since vi ∈W0 and vj 6∈W0,

n ∈ range(f) implies that n ∈ S and n ∈ range(g) implies that n 6∈ S, by requirement Ri,j,n.

Specifically, if n ∈ range(f), then there is a nonzero λ ∈ Q such that eφ(i,j,n) − λvi ∈ U ⊂W0.

Since vi ∈W0, it follows that eφ(i,j,n) ∈W0 also in this case, and therefore n ∈ S. If n ∈ range(g),

then there is a nonzero λ ∈ Q such that eφ(i,j,n) − λvj ∈ U ⊂W0. If n ∈ range(g) in this case,

then eφ(i,j,n) ∈W0 implies that vj ∈W0, a contradiction. Hence, n 6∈ S in this case. Therefore, S

is a separating set for range(f) and range(g).

In part 2 of this proof, we have defined a procedure that takes as input the functions f and g

and a proper subspace of W of V = V∞/U , and from W , f , and g computes a separating set for

range(f) and range(g). Further, the given procedure doesn’t depend on the particular functions f

and g, which are each accessed only finitely many times by each computation using this
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procedure, so this procedure is uniform in f and g. Hence, we conclude that the construction in

part 2 of this proof completes the (non-strong) Weihrauch reduction SEP ≤W PSW . �

We have the following equivalence of Weihrauch principles, which we will use to obtain a

Weihrauch parallel to Theorem 1.5 of Downey, Hirschfeldt, Kach, Lempp, Mileti, and

Montalbán [4]. For more information on results related to the following lemma, see Simpson [14,

pg. 30]. The proof of this lemma makes use of standard techniques from computability theory.

Definition 3.2.3. We define WKLW to be the Weihrauch principle that takes as input an

infinite binary tree T (encoded as a subset of {0, 1}<N that is closed under taking initial

segments) and returns a path through T (encoded as a function f : N→ {0, 1}).

Lemma 3.2.7. SEP is strongly Weihrauch equivalent to WKLW .

Proof. (SEP ≤sW WKLW ) Suppose we are given two r.e. sets A and B with A ∩B = ∅. Our goal

is to produce a set C ⊇ A with C ∩B = ∅. We will build a subtree T of {0, 1}<N in which each

node represents a finite initial segment of a candidate separating set. A path through this tree

will represent a set C of the desired type. For each string σ ∈ {0, 1}<N, define σ ∈ T if and only if

each element of A|σ|+1 ∩ {0, . . . , |σ|} is in σ and no element of B|σ|+1 ∩ {0, . . . , |σ|} is in σ. We

claim that T has the desired properties.

Suppose that h is a path through T , and suppose there is an element n of A not in h (here we

identify h with {n : h(n) = 1}). There is some stage s at which n is enumerated into A; let

s0 := max{s, n}. Now, the restriction h � (s0 + 1) with length s0 + 1 is in T , but

n ∈ (As0+2 ∩ {0, . . . , s0 + 1}) \ h � (s0 + 1), contradicting the condition for membership in T .

Hence, h contains A. Now suppose that there is an element m ∈ B ∩ h; suppose m is enumerated

into B at stage t. Let t0 := max{m, t}. We have h � (t0 + 1) ∈ T , but m ∈ Bt0+2 ∩ {0, . . . , t0 + 1},

contradicting the condition for membership in T . Hence, h contains no element of B, so

C := rangeh is a set of the desired form.

We have shown thus far that, given disjoint r.e. sets A,B, we can compute from these sets a

subtree T of {0, 1}<N such that any path through T is the characteristic function for a separating

set for A and B. This constitutes the first half of a Weihrauch reduction of the problem of

separation to that of finding a path through an infinite binary tree. Now, we can use WKLW to

36



obtain a path h through T , and from our construction of T the path h is exactly the

characteristic function of a computable separation of A and B. So the second half of the

reduction is simply the identity map.

(WKLW ≤sW SEP) Suppose we are given an infinite tree T ⊆ {0, 1}<N. We define A to be the

set of nodes σ ∈ T such that σ _ (0) is not extendible, and we define B to be the set of nodes

σ ∈ T such that σ _ (1) is not extendible, with the additional specification that if both σ _ (0)

and σ _ (1) are not extendible, then σ is put in B if σ _ (1) ceases to be extendible at an earlier

level than or at the same level as σ _ (0), and σ is put into A otherwise.

It is straightforward to show that both A and B are c.e. in T : a procedure to compute whether

a node is in A or B involves iterating over t and checking whether the finite number of possible

paths of the form σ _ (n1 = 0, n2, . . . , nt) and σ _ (m1 = 1,m2, . . . ,mt) are in T , then applying

the appropriate rule to determine if σ is added to A or B at stage t. Moreover, our definition of A

and B guarantees that A and B are disjoint.

Hence, we can apply SEP to obtain an oracle for a set C such that A ⊆ C and C ∩B = ∅. Now,

from C we can compute a path through T as follows. Define p1 to be the root of T . Suppose we

have computed the extendible subpath (p1, . . . , pk) ∈ T . We can computably choose pk+1 using C

by choosing pk+1 = 1 if (p1, . . . , pk) ∈ C and pk+1 = 0 otherwise. We claim that this choice

guarantees that the node pk+1 is extendible. Suppose that pk+1 is not extendible. Then, because

(p1, . . . , pk) is extendible, at most one of (p1, . . . , pk, 0), (p1, . . . , pk, 1) is not extendible. If

(p1, . . . , pk, 0) is not extendible, then (p1, . . . , pk) ∈ A ⊆ C, so we have chosen (p1, . . . , pk, 1). On

the other hand, if (p1, . . . , pk, 1) is not extendible, then (p1, . . . , pk) ∈ B, hence (p1, . . . , pk) 6∈ C,

so we have chosen (p1, . . . , pk, 0). It is straightforward to see that this procedure is uniformly

computable in C. Hence, at each kth stage we will have chosen an extendible node pk, so the

infinite path (p1, p2, . . .) is contained in T , and we have solved the instance T of WKLW . �

We introduce the compositional product of two Weihrauch principles, and use that operation to

establish an upper bound for PSW . Brattka and Pauly [2] define the compositional product, and

then provide an equivalent characterization. We take that equivalent characterization as our

definition, because it is easier to use in establishing classifications of Weihrauch principles.
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Definition 3.2.4. The Weihrauch degree of the compositional product f ? g of two Weihrauch

principles is defined as

f ? g ≡W max
≤W

{f ′ ◦ g′ : f ′ ≤W f ∧ g′ ≤W g},

where f ′ ◦ g′ is the set of all pairs (I, S) such that there exists a J ∈ NN with (I, J) ∈ g′

and (J, S) ∈ f ′.

We now show that an upper bound for PSW is given by the compositional product of CN

with WKLW .

Theorem 3.2.8. The principle PSW is Weihrauch reducible to WKLW ? CN.

Proof. Suppose we are given a countable vector space V . We first apply CN to locate two linearly

independent vectors u, v in V . Then, we define a binary tree using u, v, and V , as follows. Let

v0, v1, v2, . . . be an enumeration of the vectors in V and q0, q1, q2, . . . be an enumeration of the

scalars in Q. Interpret each σ ∈ {0, 1}<N as the characteristic function for a subset of

{v0, . . . , v|σ|−1}. Define σ ∈ T if and only if the subset S with characteristic function σ satisfies

the conditions for a subspace of V containing u and not containing v, with consideration

restricted to the vectors {v0, . . . , v|σ|−1} and the scalars {q0, . . . , q|σ|−1}. This means that, if

u ∈ {v0, . . . , v|σ|−1} then u ∈ S, if v ∈ {v0, . . . , v|σ|−1} then v 6∈ S, and S is closed under taking

linear combinations of vectors from {v0, . . . , v|σ|−1} with scalars from {q0, . . . , q|σ|−1}, whenever

the resulting vector is also in {v0, . . . , v|σ|−1}. Then, T is computable from u, v, and V , and any

infinite path through T will represent the characteristic function of a nontrivial proper subspace

of V . We know classically that T is infinite, because classically PSW is true. Hence, the

application of WKLW to the tree T yields the desired subspace. �

Combining Theorems 3.2.6 and 3.2.8 and Lemma 3.2.7 yields the following corollary, which is

an approximate Weihrauch reducibility parallel to part of the reverse mathematics result of

Theorem 1.5 of Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4]. We show in a later

section that the upper and lower bounds given in this corollary are not Weihrauch equivalent.
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Corollary 3.2.9. We have the following bounds for the Weihrauch strength of PSW :

WKLW ≤W PSW ≤W WKLW ? CN.

Reverse Mathematics Perspective

The following theorems give the reverse mathematics classifications of the subsystems L and PS.

Theorem 3.3.1. L is equivalent to ACA0 over RCA0.

Proof. Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4] show that ACA0 is

equivalent over RCA0 to the principle “every vector space of dimension greater than 1 has a

finite-dimensional nontrivial proper subspace.” L is at least as strong as this principle, and hence

is at least as strong as ACA0. It is straightforward to show that ACA0 implies L over RCA0. �

The following classification of PS is obtained by Downey, Hirschfeldt, Kach, Lempp, Mileti, and

Montalbán [4].

Theorem 3.3.2. PS is equivalent to WKL0 over RCA0.
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CHAPTER 4

EXISTENCE OF SATURATED SUBGRAPHS

Finite-Dimensional Saturated Subgraphs

In this section we consider principles asserting the existence of subspaces of graphs. These

principles are related to the principle ‘P’ of Gura, Hirst, and Mummert [6], which formalizes the

statement that “every graph has a connected component”. In the following we refer to this

principle of Gura, Hirst, and Mummert as PW to emphasize that it is a Weihrauch principle.

Definition 4.1.1. If G = (V,E) is a graph, then we say that S ⊆ V is a saturated subgraph if for

each v ∈ V , if v is path connected to a vertex in S, then v ∈ S.

The following straightforward lemma characterizes saturated subgraphs.

Lemma 4.1.1. If G = (V,E) is a graph, then S ⊆ V is a saturated subgraph of G if and only if S

is equal to a union of connected components of G.

We define the finite-dimensional saturated subgraph principle, PSG<N
W .

Definition 4.1.2. Define PSG<N
W to be the principle that takes as input a graph G = (V,E) and

returns a nonempty set S that is equal to the union of finitely many connected components of G.

We refer to such a set S as a nonempty finite-dimensional saturated subgraph of the graph G.

The following proof is an adaptation and slight extension of the proof given by Gura, Hirst, and

Mummert of Theorem 2.1 in the paper titled “On the existence of a connected component of a

graph” [6], which says that PW ≡sW L̂PO.

Theorem 4.1.2. L̂PO is strongly Weihrauch equivalent to PSG<N
W .

Proof. (L̂PO ≤sW PSG<N
W ) Suppose that (fn) is an instance of L̂PO. We will construct a graph

G = (V,E) from (fn), such that from any set C ⊆ V that is the union of finitely many connected

components of G we can compute a solution to the instance (fn). Let V be the set of vertices of

the form vσ,nk , where σ ∈ N<N and n, k ∈ N. Let E contain the following types of edges:

40



(i) (vσ,nk , vσ,nk+1) for all σ ∈ N<N and n, k ∈ N;

(ii) (vσ,nk , v
σ
_〈j〉,m

0 ) for all m,n ∈ N and σ ∈ N<N, if fj(k) = 0.

Now suppose that C ⊆ V is equal to the union of finitely many connected components of G,

and suppose that vσ,n0 ∈ C. It can be verified that vσ,n0 and v
σ
_〈j〉,m

0 lie in the same connected

component of G if and only if fj(k) = 0 for some k. Hence, if there is no k such that fj(k) = 0,

then for each m the vertex v
σ
_〈j〉,m

0 will lie in a different connected component from vσ,n0 . Since C

is the union of finitely many connected components, v
σ
_〈j〉,m

0 6∈ C for some m in this case. Hence,

by checking sequentially if v
σ
_〈j〉,m

0 is in C, we will eventually detect that there is no k such that

fj(k) = 0, if this is the case. We can simultaneously evaluate fj(k) for each k, halting if we

discover a k such that fj(k) = 0. Since there either is or is not an k such that fj(k) = 0, our

procedure will eventually halt, determing whether or not such an k exists. It is straightforward to

show that this procedure is computable from C, and hence from C we can compute a solution to

the instance (fn).

(PSG<N
W ≤sW L̂PO) There are numerous ways to establish this reduction. Here we note that

the principle PW of Gura, Hirst, and Mummert [6] implies PSG<N
W by definition, and

PW ≡sW L̂PO, as is proved by Gura, Hirst, and Mummert. �

Because we can computably turn a graph into an e-matroid, using Lemma 2.1.4, we obtain as a

corollary that the principle that “every e-matroid has a finite-dimensional subspace” is strongly

Weihrauch equivalent to L̂PO. However Lemma 2.1.4 requires that the graph under consideration

have at least one edge. Because the graph G constructed in the first part of the proof of

Theorem 4.1.2 has infinitely many edges, by the same proof we obtain the following corollary.

Corollary 4.1.3. The principle PSG<N
W

∗
that formalizes “every graph with at least one edge has

a nonempty finite-dimensional saturated subgraph” is strongly Weihrauch equivalent to L̂PO.

When referring to an e-matroid, nontrivial means that the given e-matroid contains at least one

nonzero element.

Definition 4.1.3. Suppose that (M,D) is an e-matroid and that S is a subspace of (M,D), as

defined in Definition 2.1.3. If there exists an element m ∈ S \ Z, then we say that S is nontrivial ;
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otherwise we say that S is trivial. We say that S is a finite-dimensional subspace of (M,D) if S is

trivial or if S is nontrivial and there is a finite basis B ⊆ S for S.

We now show that PSMW ≡sW L̂PO.

Corollary 4.1.4. The principle PSMW that takes as input a nontrivial e-matroid (M,D) and

returns a nontrivial finite-dimensional subspace of (M,D) is strongly Weihrauch equivalent

to L̂PO.

Proof. (PSMW ≤sW L̂PO): Assume that (M,D) is a nontrivial e-matroid. We define several

instances of L̂PO: First, define an instance (fn) where 0 ∈ range(fn) if and only if n ∈M . Second,

define an instance (gn) with 0 ∈ range(gn) if and only if n ∈M and there is an m 6= n in M with

{m,n} 6∈ range(D). Finally, define an instance (hn) as in the proof of Theorem 2.2.1 such that a

solution to (hn) computes χrange(D). These three instances of L̂PO can be encoded into a single

instance of L̂PO. The entire procedure described so far is uniformly computable from (M,D).

Now suppose we apply L̂PO to obtain solutions to (fn), (gn), and (hn). We can use the solution

to (fn) compute χM , and we can use the solution to (gn) to locate a nonzero element m of

(M,D). Then we can use the solution to (hn) to compute χrange(D), and χrange(D) can be used to

compute the 1-dimensional subspace of all elements n ∈M such that {m,n} ∈ D. This subspace

is a solution to PSMW . Since this computation can be carried out from any set of solutions to

(fn), (gn), and (hn), it constitutes the second half of the desired strong Weihrauch reduction.

(L̂PO ≤sW PSMW ): We know that PSG<N
W

∗ ≡sW L̂PO. Suppose we are given a countable

graph G = (V,E) with at least one edge. From G we can compute a nontrivial e-matroid (M,D)

where subspaces of (M,D) are exactly unions of connected components in G. Then, a nontrivial

finite-dimensional subspace of (M,D) is also a nontrivial finite-dimensional saturated subgraph

of G. Hence, PSG<N
W

∗ ≤sW PSMW . �

Nontrivial Proper Saturated Subgraphs

Above we considered the principle PSG<N
W that says informally that “every graph has a nonempty

finite-dimensional saturated subgraph”. Here we consider the principle that says that “every

graph with more than one connected component has a nontrivial proper saturated subgraph”.
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Definition 4.2.1. Define PSGW to be the Weihrauch principle given by the set of pairs (G,S),

where G is a countable graph with at least two connected components and S is a nontrivial proper

subgraph of G, i.e., S is a nonempty union of connected components of G that is not all of G.

We show that CN is reducible to PSGW .

Theorem 4.2.1. CN is strongly Weihrauch reducible to PSGW .

Proof. Let f : N→ N be nonsurjective. We define a graph G = (V,E). Let V = N× N, and let E

consist of edges of the form {(k, n), (k, 0)} for k, n ∈ N and {(0, t), (n+ 1, t)} where f(t) = n.

Suppose that we are given a nontrivial poper subgraph S ⊆ V . Then, we can check if (0, 0) ∈ S.

Case 1, (0, 0) ∈ S: In this case, we know that S contains (n+ 1, 0) for all n ∈ range(f). Hence,

we can search until we find an element (k + 1, 0) that is not in S, and we will have k 6∈ range(f).

Case 2, (0, 0) /∈ S: In this case, we know that S does not contain any vertices of the form

(k+ 1, 0), where k ∈ range(f). Hence, we only need to search until we find a vertex (k+ 1, 0) ∈ S,

and we will know that k 6∈ range(f).

In either case the search is guaranteed to succeed because the subgraph S is nonempty and

proper. �

We can leverage the vector space construction from Theorem 3.2.6 to show that WKLW is

Weirhauch reducible to PSGW .

Theorem 4.2.2. WKLW is Weihrauch reducible to PSGW .

Proof. Build the vector space V : Suppose we are given two functions f, g ∈ NN with

range(f) ∩ range(g) = ∅. Then, with these functions as input, we can use the construction from

Theorem 3.2.6 to obtain a subspace U ⊆ V∞ such that any nontrivial proper subspace of

V := V∞/U uniformly computes a separating set S for f and g. In that construction, each vector

in V is an equivalence class [vi] with representative vi ∈ V∞. We can identify each vector [vi] ∈ V

with its least representative and computably modify the vector space operations to operate on

least representatives. And, given any vector in V∞, we can compute the least representative of its

equivalence class in V , which may be the zero vector v0. Let L ⊆ V∞ be the set of least
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representatives of equivalence classes in U , and observe that L is computable from U . Denote the

least representative of [vj ] ∈ V by Lr([vj ]).

Build the graph G: Now let N = (L \ {v0})× N. We will define a countable graph G = (N,E)

that is computable from V . Let E consist of all pairs of the form {(vn, t), (vn, t+ 1)} such that

vn ∈ L \ {v0} and t ∈ N and of the form {(vn, t), (vm, t)} such that [vn] = λt[vm] for vectors

vn, vm ∈ L \ {v0} and scalar λt. Then, it follows that (vn, 0) and (vm, 0) lie in the same connected

component of G if and only if [vn] and [vm] lie on the same line in V . The functional that

computes this graph G can be composed with the functional that computes the vector space V to

obtain a single functional that computes G uniformly from an oracle for f and g.

Apply PSGW : Now suppose we apply PSGW to G to obtain a nontrivial, proper saturated

subgraph H, i.e., a nonempty subset of N that is equal to a union of connected components in G,

which leaves out at least one connected component of G. We intend to use H to compute a

separating set for f and g.

There is a bijection between connected components in H and lines through the origin in V ,

since (vt, 0) and (vs, 0) lie in the same connected component in G ⊇ H if and only if [vt] and [vs]

lie on the same line through the origin in V , and vertices (vn, t) can be identified with (vn, 0).

Since H is nonempty, we can search to find a (nonzero) vi ∈ L such that the line through [vi] in V

(minus [v0]) is contained in H, which happens if and only if (vi, 0) ∈ H. Since H omits at least

one connected component of G we can also search to find a nonzero vj ∈ L such that the line

through [vj ] in V is not contained in H, i.e., such that (vj , 0) 6∈ H.

Compute separating set S from H: Now define K = {[vr] ∈ V : (Lr(vr), 0) ∈ H}, and observe

that K is computable from H. Now define the set S = {n : [eφ(i,j,n)] ∈ K}, where {er}r∈N are the

standard basis vectors for V∞, and φ : N3 → N is the injective function defined in the construction

in the proof of Theorem 3.2.6. Observe that S is computable from K and U , and hence from H

and U . Specifically, we can compute the t such that vt = eφ(a,b,n), then check if [vt] ∈ K.

Since [vi], [vj ] are both 6= [0] = [v0], it follows that vi, vj 6∈ U . Hence, by the construction of U it

follows that n ∈ range(f) implies that there is a nonzero λ ∈ Q such that eφ(i,j,n)− λvi ∈ U , which

implies that [eφ(i,j,n)] = [λvi]. Since [vi] ∈ K, K is closed under nonzero scalar multiplication, and

λ[vi] = [λvi] (true in any quotient vector space), it follows that [λvi] = [eφ(i,j,n)] ∈ K, and hence
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that n ∈ S. It follows that range(f) ⊆ S.

If n ∈ range(g) then there is a nonzero λ ∈ Q such that eφ(i,j,n) − λvj ∈ U , which implies that

[eφ(i,j,n)] = [λvj ]. Then, if n ∈ S, we have [λvj ] = [eφ(i,j,n)] ∈ K. Since K closed under nonzero

scalar multiplication, this implies that [vj ] ∈ K, contradicting our assumption that [vj ] 6∈ K. It

follows that range(g) ∩ S = ∅. Hence, S is a separating set for f, g. We can verify that the second

half of this proof defines a functional that computes S from f , g, and H. Hence, we have shown

that SEP ≡W WKLW is Weihrauch reducible to PSGW . �

Hence, as a consequence of Theorem 1.2.6 we have:

Corollary 4.2.3. PSGW is not Weihrauch reducible to WKLW .

We showed above that the composition WKLW ? CN is an upper bound for PSW . Here we show

that it is also an upper bound for PSGW .

Theorem 4.2.4. PSGW is Weihrauch reducible to WKLW ? CN.

Proof. This proof is essentially the same as the proof of PSW ≤W WKL0 ? CN. Let G = (V,E) be

a countable graph with at least two connected components. We first apply CN to find a pair

(v1, v2) of non–path-connected vertices in G. Then we define a tree T ⊆ {0, 1}<N such that σ ∈ T

if and only if σ is the characteristic function of a subset S ⊆ V that is consistent with the following

requirements, only considering vertices with index at most |σ| and paths of length at most |σ|:

1. v1 ∈ S and v2 /∈ S.

2. If u ∈ S and u,w are path-connected, then w ∈ S.

Then a path through T will be the characteristic function for a connected component of G, which

is certainly a proper subgraph of G. We can apply WKLW to obtain such a path. �

Combining the results of Corollary 4.2.3 and Theorem 4.2.4 gives us the following result.

Theorem 4.2.5. WKLW is not Weihrauch equivalent to WKLW ? CN.

Proof. It is straightforward to show that WKLW ≤W WKLW ? CN. If the opposite relation held,

then it would follow from Theorem 4.2.4 that PSGW ≤W WKLW , contradicting

Corollary 4.2.3. �
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CHAPTER 5

ADDITIONAL DEPENDENCE RESULTS

Equivalence of Vector Space Basis and Decomposition Principles

Combining Theorems 2.2.2 and 2.3.1 in this work with Theorems 3 and 12 of Hirst and

Mummert [8] shows that finding a basis for an e-matroid and decomposing an e-matroid into

1-dimensional subspaces are equivalent problems from both the reverse mathematics and the

Weihrauch reducibility perspectives. It thus seems plausible that the same equivalence holds

when “e-matroid” is replaced with “countable vector space”.

Friedman, Simpson, and Smith [5] prove that the principle “every vector space has a basis” is

equivalent to ACA0 over RCA0. Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4]

prove that the principle “every vector space of dimension greater than one has a

finite-dimensional nontrivial proper subspace” is equivalent to ACA0 over RCA0. Here we use the

latter result to show that the principle “every vector space has a decomposition into 1-dimensional

subspaces” is also equivalent to ACA0 over RCA0. The definition of a decomposition of a

computable vector space into 1-dimensional subspaces is analogous to Definition 2.3.1.

Theorem 5.1.1. The principle DV that formalizes the statement “every vector space has a

decomposition into 1-dimensional subspaces” is equivalent to ACA0 over RCA0.

Proof. It is straightforward to show that ACA0 implies DV. To show that DV implies ACA0, we

reason as follows. Let V be a countable vector space. Apply DV to obtain a decomposition f of V

into 1-dimensional subspaces. A 1-dimensional subspace S of V can now be obtained from f

using ∆0
1 comprehension by defining S to be the set of all v ∈ V such that f(v) = 0 or f(v) = 1.

As mentioned above, obtaining a 1-dimensional subspace from an arbitrary countable vector space

requires ACA0. Hence, DV implies ACA0. �

We would like to obtain the parallel result to Theorem 5.1.1 in the Weihrauch reducibility setting,

which would be that DV is Weihrauch equivalent to L̂PO. To discuss one possible approach for
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obtaining this result, we define the Weihrauch reducibility version of the finite-dimensional

subspace principle for vector spaces.

Definition 5.1.1. Let PS<N
W be the Weihrauch principle defined by the set of pairs (V, S), where

V is a countable vector space of dimension greater than 1 and S is a finite-dimensional nontrivial

proper subspace of V .

It follows from Theorem 2.1.1 that DV ≤W L̂PO. If we could show that L̂PO ≤W PS<N
W , this

would be one way to establish the lower bound L̂PO ≤W DV, since one can compute a

1-dimensional subspace from a 1-dimensional decomposition. We discuss the plausibility of the

relationship L̂PO ≤W PS<N
W as a parallel to a computability result of Downey, Hirschfeldt, Kach,

Lempp, Mileti, and Montalbán [4] in Chapter 6.
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CHAPTER 6

OPEN PROBLEMS AND FUTURE WORK

In this section we describe a few open problems related to our work, as well as an extension of

some of the classification problems we have considered.

Classification of PS<N
W and LW

In Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4] it is shown that there is a

computable vector space V of dimension greater than 1 such that the Turing degree of each

finite-dimensional nontrivial proper subspace of V is at least ∅′. It is also shown that the reverse

mathematics version of PS<N
W , which says that “every countable vector space of dimension greater

than 1 has a finite-dimensional nontrivial proper subspace”, is equivalent to ACA0 over RCA0. It

thus seems plausible that PS<N
W is Weihrauch equivalent to L̂PO. However, the proof given by

Downey, Hirschfeldt, Kach, Lempp, Mileti, and Montalbán [4] for the finite-dimensional case

makes use of a nonuniform argument, and thus does not translate directly to the Weihrauch

reducibility setting.

It follows by definition that PS<N
W ≤sW LW . Hence, if we established L̂PO ≤W PS<N

W , then we

would also obtain LW ≡sW PS<N
W . One argument for the plausibility of this result is that the

analogous result holds in the graph setting: the principle that takes a countable graph and

produces a connected component and the principle that takes a countable graph and produces a

finite-dimensional saturated subgraph are both Weihrauch equivalent to L̂PO.

Classification of PSW and PSGW

We have established that both of PSW and PSGW are bounded above by WKLW ? CN and below

by WKLW . It remains to find an exact Weihrauch reducibility classification of these two

principles. In particular, it remains to determine whether these principles are Weihrauch

equivalent.
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Subspaces and Decompositions of Structures with Bounded Dimension

Gura, Hirst, and Mummert [6] define the principle Pk, which takes as input a graph with exactly

k connected components and returns a connected component, and the principle Dk, which

decomposes a graph with exactly k connected components into its connected components. They

show that these principles are equivalent to CN. We are interested in the analogous principles in

the vector space and matroid settings, which involve producing a subspace or a decomposition of

a vector space or matroid with dimension k.

Hirst and Mummert [8] define principles that take as input a countable graph, matroid, or

vector space and produce a basis. They show that each of these principles is strongly Weihrauch

equivalent to L̂PO. They also define versions of these principles in which the input object comes

with a finite upper bound on its dimension. They show that these bounded principles are each

equivalent to a Weihrauch principle C#
max, and they show that the formalization of C#

max is

equivalent to Σ0
2 induction in the reverse mathematics setting. In the same spirit, we are

interested in versions of the subspace and decomposition principles for graphs, vector spaces, and

matroids in which the input object comes with a finite upper bound on its dimension.
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APPENDIX A

LETTER FROM INSTITUTIONAL RESEARCH BOARD

50



REFERENCES

[1] Vasco Brattka and Guido Gherardi, Effective choice and boundedness principles in
computable analysis, Bulletin of Symbolic Logic 17 (2011), no. 1, 73–117.

[2] Vasco Brattka and Arno Pauly, On the algebraic structure of Weihrauch degrees, CoRR
abs/1604.08348 (2016).

[3] Francois G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer,
On uniform relationships between combinatorial problems, Trans. Amer. Math. Soc. 368
(2016), no. 2, 1321–1359. MR 3430365

[4] Rodney G. Downey, Denis R. Hirschfeldt, Asher M. Kach, Steffen Lempp, Joseph R. Mileti,
and Antonio Montalbán, Subspaces of computable vector spaces, J. Algebra 314 (2007), no. 2,
888–894. MR 2344589

[5] Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith, Countable algebra and set
existence axioms, Ann. Pure Appl. Logic 25 (1983), no. 2, 141–181. MR 725732

[6] Kirill Gura, Jeffry L. Hirst, and Carl Mummert, On the existence of a connected component
of a graph, Computability 4 (2015), no. 2, 103–117. MR 3393974

[7] Jeffry L. Hirst, Connected components of graphs and reverse mathematics, Arch. Math. Logic
31 (1992), no. 3, 183–192. MR 1147740

[8] Jeffry L. Hirst and Carl Mummert, Reverse mathematics of matroids, Computability and
Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday
(Cham) (Adam Day, Michael Fellows, Noam Greenberg, Bakhadyr Khoussainov, Alexander
Melnikov, and Frances Rosamond, eds.), Springer International Publishing, 2017,
pp. 143–159.

[9] G. Metakides and A. Nerode, Recursively enumerable vector spaces, Ann. Math. Logic 11
(1977), no. 2, 147–171. MR 0446936

[10] James Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21,
Oxford University Press, Oxford, 2011. MR 2849819

[11] Theodore A. Slaman Peter A. Cholak, Carl G. Jockusch, On the strength of Ramsey’s
theorem for pairs, The Journal of Symbolic Logic 66 (2001), no. 1, 1–55.

[12] Hartley Rogers, Jr., Theory of recursive functions and effective computability, second edition
ed., MIT Press, Cambridge, MA, 1987. MR 886890

[13] Stephen G. Simpson, Subsystems of second order arithmetic, second edition ed., Perspectives
in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic,
Poughkeepsie, NY, 2009. MR 2517689

[14] , Degrees of unsolvability: a tutorial, Evolving computability, Lecture Notes in
Comput. Sci., vol. 9136, Springer, Cham, 2015, pp. 83–94. MR 3382348

51



[15] A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem. A
Correction, Proc. London Math. Soc. S2-43 (1936), no. 6, 544. MR 1575661

52



Sean Sovine

Education

• Master of Arts in Mathematics
Marshall University, May 2017

• Bachelor of Science in Mathematics
Marshall University, May 2013

• Bachelor of Science in Computer Science
Marshall University, May 2013

• Bachelor of Fine Arts in Music
Marshall University, May 2008

Publications

• Mummert, Carl; Saadaoui, Alaeddine; and Sovine, Sean (2015). The modal logic of
reverse mathematics. Archive for Mathematical Logic 54(3-4), 425-437.

53


	Marshall University
	Marshall Digital Scholar
	2017

	Weihrauch Reducibility and Finite-Dimensional Subspaces
	Sean Sovine
	Recommended Citation


	TITLE PAGE
	CONTENTS
	LIST OF FIGURES
	List of Figures
	Abstract
	INTRODUCTION
	Computability Theory
	Weihrauch Reducibility
	Reverse Mathematics
	Principles Related to Dependence

	DECOMPOSITION INTO SUBSPACES
	Matroid Decomposition
	Weihrauch Perspective
	Reverse Mathematics Perspective

	EXISTENCE OF SUBSPACES OF VECTOR SPACES
	Countable Vector Spaces
	Weihrauch Perspective
	Reverse Mathematics Perspective

	EXISTENCE OF SATURATED SUBGRAPHS
	Finite-Dimensional Saturated Subgraphs
	Nontrivial Proper Saturated Subgraphs

	ADDITIONAL DEPENDENCE RESULTS
	Equivalence of Vector Space Basis and Decomposition Principles

	OPEN PROBLEMS AND FUTURE WORK
	Classification of PS<NW and LW
	Classification of PSW and PSGW
	Subspaces and Decompositions of Structures with Bounded Dimension

	Letter from Institutional Research Board
	References
	Vita

