351 research outputs found

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Blind Image Deconvolution: Model and Computation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Retinal image analysis: Image processing and feature extraction oriented to the clinical task

    Get PDF
    Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract quantitative information about many diseases. Modern ophthalmology relies on the advances in digital imaging and computing power. In this paper we present an overview of the results from the doctoral dissertation by Andrés G. Marrugo. This dissertation contributes to the digital analysis of retinal images and the problems that arise along the imaging pipeline of fundus photography, a field that is commonly referred to as retinal image analysis. We have dealt with and proposed solutions to problems that arise in retinal image acquisition and longitudinal monitoring of retinal disease evolution. Specifically, non-uniform illumination compensation, poor image quality, automated focusing, image segmentation, change detection, space-invariant (SI) and space-variant (SV) blind deconvolution (BD). Digital retinal image analysis can be effective and cost-efficient for disease management, computeraided diagnosis, screening and telemedicine and applicable to a variety of disorders such as glaucoma, macular degeneration, and retinopathy. © 2017. Sociedad Española de Óptica. All right reserved

    Learning Lens Blur Fields

    Full text link
    Optical blur is an inherent property of any lens system and is challenging to model in modern cameras because of their complex optical elements. To tackle this challenge, we introduce a high-dimensional neural representation of blur-the lens blur field\textit{the lens blur field}-and a practical method for acquiring it. The lens blur field is a multilayer perceptron (MLP) designed to (1) accurately capture variations of the lens 2D point spread function over image plane location, focus setting and, optionally, depth and (2) represent these variations parametrically as a single, sensor-specific function. The representation models the combined effects of defocus, diffraction, aberration, and accounts for sensor features such as pixel color filters and pixel-specific micro-lenses. To learn the real-world blur field of a given device, we formulate a generalized non-blind deconvolution problem that directly optimizes the MLP weights using a small set of focal stacks as the only input. We also provide a first-of-its-kind dataset of 5D blur fields-for smartphone cameras, camera bodies equipped with a variety of lenses, etc. Lastly, we show that acquired 5D blur fields are expressive and accurate enough to reveal, for the first time, differences in optical behavior of smartphone devices of the same make and model

    Learning Optimization-inspired Image Propagation with Control Mechanisms and Architecture Augmentations for Low-level Vision

    Full text link
    In recent years, building deep learning models from optimization perspectives has becoming a promising direction for solving low-level vision problems. The main idea of most existing approaches is to straightforwardly combine numerical iterations with manually designed network architectures to generate image propagations for specific kinds of optimization models. However, these heuristic learning models often lack mechanisms to control the propagation and rely on architecture engineering heavily. To mitigate the above issues, this paper proposes a unified optimization-inspired deep image propagation framework to aggregate Generative, Discriminative and Corrective (GDC for short) principles for a variety of low-level vision tasks. Specifically, we first formulate low-level vision tasks using a generic optimization objective and construct our fundamental propagative modules from three different viewpoints, i.e., the solution could be obtained/learned 1) in generative manner; 2) based on discriminative metric, and 3) with domain knowledge correction. By designing control mechanisms to guide image propagations, we then obtain convergence guarantees of GDC for both fully- and partially-defined optimization formulations. Furthermore, we introduce two architecture augmentation strategies (i.e., normalization and automatic search) to respectively enhance the propagation stability and task/data-adaption ability. Extensive experiments on different low-level vision applications demonstrate the effectiveness and flexibility of GDC.Comment: 15 page
    corecore