63 research outputs found

    On the passivity of interaction control with series elastic actuation

    Get PDF
    Regulating the mechanical interaction between robot and environment is a fundamentally important problem in robotics. Many applications such as manipulation and assembly tasks necessitate interaction control. Applications in which the robots are expected to collaborate and share the workspace with humans also require interaction control. Therefore, interaction controllers are quintessential to physical human-robot interaction (pHRI) applications. Passivity paradigm provides powerful design tools to ensure the safety of interaction. It relies on the idea that passive systems do not generate energy that can potentially destabilize the system. Thus, coupled stability is guaranteed if the controller and the environment are passive. Fortunately, passive environments constitute an extensive and useful set, including all combinations of linear or nonlinear masses, springs, and dampers. Moreover, a human operator may also be treated as a passive network element. Passivity paradigm is appealing for pHRI applications as it ensures stability robustness and provides ease-of-control design. However, passivity is a conservative framework which imposes stringent limits on control gains that deteriorate the performance. Therefore, it is of paramount importance to obtain the most relaxed passivity bounds for the control design problem. Series Elastic Actuation (SEA) has become prevalent in pHRI applications as it provides considerable advantages over traditional sti actuators in terms of stability robustness and delity of force control, thanks to deliberately introduced compliance between the actuator and the load. Several impedance control architectures have been proposed for SEA. Among the alternatives, the cascaded controller with an inner-most velocity loop, an intermediate torque loop and an outer-most impedance loop is particularly favoured for its simplicity, robustness, and performance. In this thesis, we derive the necessary and su cient conditions to ensure the passivity of the cascade-controller architecture for rendering two classical linear impedance models of null impedance and pure spring. Based on the newly established passivity conditions, we provide non-conservative design guidelines to haptically display free-space and virtual spring while ensuring coupled stability, thus the safety of interaction. We demonstrate the validity of these conditions through simulation studies as well as physical experiments. We demonstrate the importance of including physical damping in the actuator model during derivation of passivity conditions, when integral controllers are utilized. We note the unintuitive adversary e ect of actuator damping on system passivity. More precisely, we establish that the damping term imposes an extra bound on controller gains to preserve passivity. We further study an extension to the cascaded SEA control architecture and discover that series elastic damping actuation (SEDA) can passively render impedances that are out of the range of SEA. In particular, we demonstrate that SEDA can passively render Voigt model and impedances higher than the physical spring-damper pair in SEDA. The mathematical analyses of SEDA are veri ed through simulations

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Fractional order control in haptics

    Get PDF
    Fractional order (FO) calculus—a generalization of the traditional calculus to arbitrary order differointegration-is an effective mathematical tool that broadens the modeling boundaries of the familiar integer order calculus. The effectiveness of this remarkable mathematical tool has been observed in many practical applications. For instance, FO models enable faithful representation of viscoelastic materials that exhibit frequency dependent stiffness and damping characteristics within a single mechanical element. In this dissertation, we propose and analyze the use of FO controllers in haptic systems and provide a systematic analysis of this new control method in the light of the fundamental trade-off between the stability robustness and the transparency performance. FO controllers provide a promising generalization that allows one to better shape the frequency response of a system to achieve more favorable robustness and performance characteristics. In particular, the use of FO calculus in systems and control applications provides the user with an extra design variable, the order of differointegration, which can be tuned to improve the desired behavior of the overall system. We introduce a generalized FO nondimensionalized sampled-data model for the haptic system and study its frequency dependent behaviour. Then, we analyze the stability of this system with and without a human operator in the loop. Moreover, we experimentally verify the stability analysis and demonstrate that the experiments capture the essence of the stability behaviour between different differentiation orders. The passivity analysis is conducted for two cases: the first approach takes the environment model into account and ensures the passivity of the haptic system together with the virtual environment, while the second approach assumes the presence of a passive environment model in the control loop and introduces a controller to the closed-loop system that acts like a buffer between the haptic display and the virtual environment. The second approach is more suitable for complex environments as it investigates the passivity properties of the two-port haptic system together with a virtual coupler. After characterizing the stability boundaries for the FO haptic system, we analyse the performance of the system by studying the transparency performance of the haptic rendering with such controllers. In particular, we employ effective impedance analysis to decompose the closed-loop impedance of a haptic system into its parts and study the contribution of FO elements on the stiffness and damping rendering characteristics of the system. Finally, we apply the theoretical results to a novel haptic rendering scenario: haptic rendering of viscoelastic materials. A fractional order mathematical model for the human prostate tissue with history depended stress and deflection behavior, is chosen as the viscoelastic physical system to be rendered. The stress relaxation of the haptic rendering is verified against the experimental data, indicating a high fidelity rendering

    Safe Haptics-enabled Patient-Robot Interaction for Robotic and Telerobotic Rehabilitation of Neuromuscular Disorders: Control Design and Analysis

    Get PDF
    Motivation: Current statistics show that the population of seniors and the incidence rate of age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical care is likely to increase the survival rate but will result in even more patients in need of Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place a significant burden on the world\u27s healthcare systems. In many cases, the only alternative is limited and often delayed outpatient therapy. The situation will be worse for patients in remote areas. One potential solution is to develop technologies that provide efficient and safe means of in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive Robotic Neurorehabilitation (HIRN) systems have been developed. Existing Challenges: Although there are specific advantages with the use of HIRN technologies, there still exist several technical and control challenges, e.g., (a) absence of direct interactive physical interaction between therapists and patients; (b) questionable adaptability and flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote areas; and (d) guaranteeing patient-robot interaction safety while maximizing system transparency, especially when high control effort is needed for severely disabled patients, when the robot is to be used in a patient\u27s home or when the patient experiences involuntary movements. These challenges have provided the motivation for this research. Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation framework is designed, analyzed and implemented that can be used as a new paradigm for delivering motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilitation procedure. The system also allows for kinesthetic remote and ultimately in-home rehabilitation. To guarantee interaction safety while maximizing the performance of the system, a new framework for designing stabilizing controllers is developed initially based on small-gain theory and then completed using strong passivity theory. The proposed control framework takes into account knowledge about the variable biomechanical capabilities of the patient\u27s limb(s) in absorbing interaction forces and mechanical energy. The technique is generalized for use for classical rehabilitation robotic systems to realize patient-robot interaction safety while enhancing performance. In the next step, the proposed telerobotic system is studied as a modality of training for classical HIRN systems. The goal is to first model and then regenerate the prescribed kinesthetic supervision of an expert therapist. To broaden the population of patients who can use the technology and HIRN systems, a new control strategy is designed for patients experiencing involuntary movements. As the last step, the outcomes of the proposed theoretical and technological developments are translated to designing assistive mechatronic tools for patients with force and motion control deficits. This study shows that proper augmentation of haptic inputs can not only enhance the transparency and safety of robotic and telerobotic rehabilitation systems, but it can also assist patients with force and motion control deficiencies

    Novel Actuation Methods for High Force Haptics

    Get PDF

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented

    Constraint-based technique for haptic volume exploration

    Get PDF
    Journal ArticleWe present a haptic rendering technique that uses directional constraints to facilitate enhanced exploration modes for volumetric datasets. The algorithm restricts user motion in certain directions by incrementally moving a proxy point along the axes of a local reference frame. Reaction forces are generated by a spring coupler between the proxy and the data probe, which can be tuned to the capabilities of the haptic interface. Secondary haptic effects including field forces, friction, and texture can be easily incorporated to convey information about additional characteristics of the data. We illustrate the technique with two examples: displaying fiber orientation in heart muscle layers and exploring diffusion tensor fiber tracts in brain white matter tissue. Initial evaluation of the approach indicates that haptic constraints provide an intuitive means for displaying directional information in volume data
    corecore