3 research outputs found

    Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Get PDF
    This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA) and gain ratio of arrival (GROA) measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB) is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method

    A study on the error minimization of underwater source localization using sub-array

    Get PDF
    Passive sonar listens to the sound radiated by any underwater target using a sensor system, and detects its signals against a background noise of the sea and the self noise of the sonar platform. The system can be made directional with time difference of arrival, therefore the horizontal bearing of a signal is known. In addition to measure the bearings with direction of arrival of a signal from sub-array well separated, the direct passive range is known. Underwater source localization based on time difference of arrival measurements has some problems due to the sub-array location uncertainty, partial sensor failures and sound speed mismatch from real underwater environments and system. Therefore the source localization error using TDOA measurements with these problems is investigated. Many algorithms for robust underwater source localization have been developed using TDOA measurements in recent years. One classic algorithm is the linear least squares method. Through pre-processing of TDOA measurements, a set of linear forward closed-form equations can be obtained without considering the relationship between the measurements and references by equations. To incorporate the constraint on the relationship, the localization problem by linear least squares formula can not be convex in accordance with the measurements. In this dissertation, research shows the robust method to minimize the underwater source localization errors with non-linear method, Levenberg-Marquardt. This algorithm is an iterative operation that locates the minimum of a multi-variated function that is expressed as the sum of squares of non-linear real-value. The real critical values for the research of robust underwater source localization are considered the sub-array location uncertainty, partial sensor failures and sound speed mismatch. The proposed algorithm is evaluated as root mean squared errors in terms of the each and mixed value error ranges through the Monte-Carlo simulation. It significantly shows that root mean squared errors of the proposed method based on time difference of arrival are lower than the result of the previous linear least squares method in many cases.|์ˆ˜๋™ ์†Œ๋‚˜๋Š” ์ˆ˜์ค‘์˜ ์†Œ์Œ์›์ด ๋ฐฉ์‚ฌํ•˜๋Š” ์ŒํŒŒ๋ฅผ ํƒ์ง€ํ•˜์—ฌ ์†Œ์Œ์›์˜ ๋ฐฉ์œ„, ๊ฑฐ๋ฆฌ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ์ŒํŒŒ์˜ ํšจ๊ณผ์ ์ธ ํƒ์ง€๋ฅผ ์œ„ํ•˜์—ฌ ์ŒํŒŒ ํƒ์ง€ ์„ผ์„œ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ถ€๋ฐฐ์—ด๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ ์„ผ์„œ์— ์ž…์‚ฌ๋˜๋Š” ์‹ ํ˜ธ์˜ ๋„๋ž˜ ์‹œ๊ฐ„์ฐจ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋„๋ž˜๊ฐ๊ณผ ๊ฑฐ๋ฆฌ๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์‹ ํ˜ธ์›์˜ ๋„๋ž˜๊ฐ ๋ฐ ๋„๋ž˜ ์‹œ๊ฐ„์ฐจ ์‚ฐ์ถœ์— ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœ์‹œํ‚ค๋Š” ๋ณ€์ˆ˜๋“ค์„ ๋„์ถœํ•˜๊ณ  ์˜ค์ฐจ๋ฅผ ํฌํ•จํ•œ ๋ณ€์ˆ˜๋“ค๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๊ฑฐ๋ฆฌ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœํ•˜๋Š” ๋ณ€์ˆ˜๋“ค์€ ๋ถ€๋ฐฐ์—ด์˜ ์œ„์น˜ ์˜ค์ฐจ, ํ•ด์–‘ํ™˜๊ฒฝ์˜ ์ŒํŒŒ ์ „๋‹ฌ ์†๋„์™€ ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๋Š” ์ŒํŒŒ์ „๋‹ฌ์†๋„์˜ ๋ถ€์ •ํ•ฉ, ์ˆ˜์‹  ์„ผ์„œ์˜ ์ž‘๋™ ์œ ๋ฌด๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ์„ผ์„œ์˜ ๊ณ ์žฅ ์ƒํƒœ๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถ„์‚ฐ๋œ ๋ถ€๋ฐฐ์—ด๋กœ ์ž…์‚ฌ๋˜๋Š” ์‹ ํ˜ธ์›์˜ ๋„๋ž˜ ์‹œ๊ฐ„์ฐจ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์น˜ ์ถ”์ • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ˆ˜์ค‘ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ์ตœ์ ํ™” ๊ธฐ๋ฒ•์—๋Š” ์˜ค์ฐจ๋ฅผ ํฌํ•จํ•œ ์ธก์ • ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด๋ก ์ ์œผ๋กœ ์˜ˆ์ธกํ•œ ๊ธฐ๋Œ€๊ฐ’๊ณผ์˜ ํŽธ์ฐจ๋ฅผ ์ค„์ž„์œผ๋กœ์„œ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์œผ๋กœ ์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•(LS)์ด ์žˆ๋‹ค. ์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์€ ๊ด€์ธก ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋ฐœ์‚ฐ ๋˜๋Š” ๊ตญ์†Œ ์œ„์น˜(Local Minimum)๋ฅผ ์ถ”์ •ํ•˜๋Š” Forward Closed Form์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•๊ณผ๋Š” ๋‹ฌ๋ฆฌ ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์€ Backward Recursive Form ์œผ๋กœ ๋งค ์‹œ๊ฐ„ ์ˆ˜์‹ ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ˜๋ณต ์—ฐ์‚ฐ์„ ํ†ตํ•˜์—ฌ ๋ชฉ์  ํ•จ์ˆ˜ ๋‚ด์— ํฌํ•จ๋œ ๋ณ€์ˆ˜์˜ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค. ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์€ ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐํญ ๊ณ„์ˆ˜(Damping Coefficient)๋ฅผ ์–ด๋–ป๊ฒŒ ์ •์˜ํ•˜๋Š๋ƒ์— ๋”ฐ๋ผ Gauss Newton, Gradient Descent ๋ฐฉ๋ฒ•์œผ๋กœ ๊ตฌ๋ถ„ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‘ ๊ฐœ์˜ ๋น„์„ ํ˜• ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ํ˜•ํƒœ์ธ LM(Levenberg-Marquardt) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ์ˆ˜์ค‘ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์€ ์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์— ๋น„ํ•˜์—ฌ ์•ˆ์ •์ ์ธ ํ•ด๋ฅผ ๊ฐ€์ง€๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ˆ˜์ค‘ ์†Œ์Œ์›์˜ ๋ฐฉ์œ„, ๊ฑฐ๋ฆฌ ์ถ”์ • ์˜ค์ฐจ๋ฅผ ์œ ๋ฐœํ•˜๋Š” 3๊ฐœ์˜ ์ฃผ์š” ๋ณ€์ˆ˜(์ŒํŒŒ์ „๋‹ฌ์†๋„์˜ ๋ถ€์ •ํ•ฉ, ๋ถ€๋ฐฐ์—ด ๊ฐ„์˜ ์œ„์น˜ ์˜ค์ฐจ, ์„ผ์„œ์˜ ๊ณ ์žฅ ์ƒํƒœ)์— ์˜ค์ฐจ๋ฅผ ํฌํ•จํ•œ ๋ชจ์˜ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์ธ LM ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉํ•˜์—ฌ ๋ชจ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ†ต๊ณ„์ ์ธ ํŠน์„ฑ์„ ๋„์ถœํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ž…๋ ฅ ์กฐ๊ฑด์— ๋”ฐ๋ผ 500ํšŒ์˜ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ํ†ต์ƒ์ ์ธ ์˜ค์ฐจ ๋ถ„์„ ๊ธฐ๋ฒ• ๊ฐ€์šด๋ฐ ํ•˜๋‚˜์ธ ํ‰๊ท ์ œ๊ณฑ๊ทผ์˜ค์ฐจ(RMSE, Root Mean Squared Errors) ๊ฐ’์„ ๊ตฌํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ์ œ์•ˆ ๊ธฐ๋ฒ•์ด ์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ•์— ๋น„ํ•ด ๋Œ€๋ถ€๋ถ„์˜ ์กฐ๊ฑด์—์„œ 5~50% ๋ฒ”์œ„๋กœ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋ถ€๋ฐฐ์—ด์˜ ์œ„์น˜ ์˜ค์ฐจ์™€ ๊ฐ™์€ ์ผ๋ถ€ ๋ณ€์ˆ˜์˜ ์„ฑ๋Šฅ ์ œ์•ˆ ๋ฒ”์œ„๋„ ํ™•์ธํ•˜์˜€๋‹ค.ํ‘œ ์ฐจ๋ก€ iii ๊ทธ๋ฆผ ์ฐจ๋ก€ iv Abbreviations vi ์š” ์•ฝ ๋ฌธ vii Abatract ix ์ œ 1 ์žฅ ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ ๋ชฉ์  3 1.3 ๋…ผ๋ฌธ ๊ตฌ์„ฑ 13 ์ œ 2 ์žฅ ์ˆ˜์ค‘ ํ‘œ์ ์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ• 14 ์ œ 3 ์žฅ ํ‘œ์  ์œ„์น˜ ์ถ”์ • ์˜ค์ฐจ ์„ฑ๋Šฅ ๋ถ„์„ 28 3.1 ์„ผ์„œ ๊ณ ์žฅ์— ๋”ฐ๋ฅธ ์˜ค์ฐจ ์„ฑ๋Šฅ ๋ถ„์„ 28 3.2 ์„ผ์„œ ์œ„์น˜ ์˜ค์ฐจ์— ๋”ฐ๋ฅธ ์˜ค์ฐจ ์„ฑ๋Šฅ ๋ถ„์„ 36 3.3 ์Œ์† ์˜ค์ฐจ์— ๋”ฐ๋ฅธ ์˜ค์ฐจ ์„ฑ๋Šฅ ๋ถ„์„ 40 3.4 ๋ณตํ•ฉ ์˜ค์ฐจ์— ๋”ฐ๋ฅธ ์˜ค์ฐจ ์„ฑ๋Šฅ ๋ถ„์„ 46 ์ œ 4 ์žฅ ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ• ๊ธฐ๋ฐ˜์˜ ๊ฑฐ๋ฆฌ ์ถ”์ • ์˜ค์ฐจ ์ตœ์†Œํ™” 52 4.1 ๊ธฐ์กด์˜ ๊ธฐ๋ฒ• 52 4.2 ๋น„์„ ํ˜• ์ตœ์†Œ์ž์Šน๋ฒ• ๊ธฐ๋ฐ˜์˜ ๊ฑฐ๋ฆฌ ์ถ”์ • ๋ฐฉ๋ฒ• 59 ์ œ 5 ์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 63 5.1 ๋ชจ์˜์‹คํ—˜ ํ™˜๊ฒฝ 65 5.2 ๊ฐœ๋ณ„ ์˜ค์ฐจ์— ๋”ฐ๋ฅธ TDOA ์ถ”์ • ์„ฑ๋Šฅ ๋ถ„์„ 67 5.3 ๋ณตํ•ฉ ์˜ค์ฐจ์— ๋”ฐ๋ฅธ TDOA ์ถ”์ • ์„ฑ๋Šฅ ๋ถ„์„ 73 5.4 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ์ข…ํ•ฉ 80 ์ œ 6 ์žฅ ๊ฒฐ๋ก  81 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 83Docto

    Passive multiple disjoint sources localization using TDOAs and GROAs in the presence of sensor location uncertainties

    No full text
    corecore