348,408 research outputs found
Recommended from our members
Principles and calibration of solid phase microextraction fibre (passive sampler) for measurements of airflow and air infiltration in dwellings
Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres. These passive sampling techniques have been calibrated against tracer gas decay techniques and measurements from a standard orifice plate. Two constant sources of volatile organic compounds were diffused into two sections of a humidity chamber and sampled using SPME fibres. From a total of four SPME fibres (two in each section), reproducible results were obtained. Emission rates and air movement from one section to the other were predicted using developed algorithms. Comparison of the SPME fibre technique with that of the tracer gas technique and measurements from an orifice plate showed similar results with good precision and accuracy. With these fibres, infiltration rates can be measured over grab samples in a time weighted averaged period lasting from 10 minutes up to several days.
Key words: passive samplers, solid phase microextraction fibre, tracer gas techniques, airflow, air infiltration, houses
Measurement of soil moisture trends with airborne scatterometers
In an effort to investigate aircraft multisensor responses to soil moisture and vegetation in agricultural fields, an intensive ground sampling program was conducted in Guymon, Oklahoma and Dalhart, Texas in conjunction with aircraft data collected for visible/infrared and passive and active microwave systems. Field selections, sampling techniques, data processing, and the aircraft schedule are discussed for both sites. Field notes are included along with final (normalized and corrected) data sets
Pesticide monitoring in inshore waters of the Great Barrier Reef using both time-integrated and event monitoring techniques (2013-2014)
The report details pesticide monitoring activities carried out utilising a combination of passive sampling and grab sampling techniques in the Great Barrier Reef Marine Park as part of the Reef Rescue Marine Monitoring Program (MMP). The MMP was implemented to evaluate changes in water quality in the Great Barrier Reef (GBR) and the status of key ecosystems under the Reef Water Quality Protection Plan (RWQPP) 2003 (which was further updated in 2009)
Multi-tool formaldehyde measurement in simulated and real atmospheres for indoor air survey and concentration change monitoring
International audienceFormaldehyde is of particular health concern since it is carcinogenic for human and ubiquitous in indoor air where people spend most of their time. Therefore, it is important to have suitable methods and techniques to measure its content in indoor air. In the present work, four different techniques have been tested in the INERIS exposure chamber and in indoor environments in comparison to a standard active method: passive sampling method based on the reaction of 2,4-dinitrophenylhydrazine with formaldehyde, two on-line continuous monitoring systems based on fluorescence and UV measurements and a portable commercialised analyser based on electrochemical titration. Two formaldehyde concentrations, about 10 and 25 μg m−3 were generated in an exposure chamber under controlled conditions of temperature, relative humidity, and wind speed to simulate real conditions and assess potential influence on passive sampling and continuous systems response. Influence of sampling periods on passive sampling has also been evaluated. The real atmosphere experiments have been performed in four different indoor environments: an office, a furniture shop, a shopping mall, and residential dwellings in which several potential formaldehyde sources linked to household activities have been tested. The analytical and sampling problems associated with each measurement method have been identified and discussed. An overall agreement between each technique has been observed and continuous analyzers allowed for formaldehyde concentrations change monitoring and secondary formation of that pollutant observation
Recommended from our members
Development and Demonstration of a TDOA-Based GNSS Interference Signal Localization System
Background theory, a reference design, and demonstration
results are given for a Global Navigation Satellite
System (GNSS) interference localization system comprising a
distributed radio-frequency sensor network that simultaneously
locates multiple interference sources by measuring their signals’
time difference of arrival (TDOA) between pairs of nodes in
the network. The end-to-end solution offered here draws from
previous work in single-emitter group delay estimation, very long
baseline interferometry, subspace-based estimation, radar, and
passive geolocation. Synchronization and automatic localization
of sensor nodes is achieved through a tightly-coupled receiver
architecture that enables phase-coherent and synchronous sampling
of the interference signals and so-called reference signals
which carry timing and positioning information. Signal and crosscorrelation
models are developed and implemented in a simulator.
Multiple-emitter subspace-based TDOA estimation techniques
are developed as well as emitter identification and localization
algorithms. Simulator performance is compared to the CramérRao
lower bound for single-emitter TDOA precision. Results are
given for a test exercise in which the system accurately locates
emitters broadcasting in the amateur radio band in Austin, TX.Aerospace Engineering and Engineering Mechanic
Recommended from our members
Noise shaping Asynchronous SAR ADC based time to digital converter
Time-to-digital converters (TDCs) are key elements for the digitization of timing information in modern mixed-signal circuits such as digital PLLs, DLLs, ADCs, and on-chip jitter-monitoring circuits. Especially, high-resolution TDCs are increasingly employed in on-chip timing tests, such as jitter and clock skew measurements, as advanced fabrication technologies allow fine on-chip time resolutions. Its main purpose is to quantize the time interval of a pulse signal or the time interval between the rising edges of two clock signals. Similarly to ADCs, the performance of TDCs are also primarily characterized by Resolution, Sampling Rate, FOM, SNDR, Dynamic Range and DNL/INL. This work proposes and demonstrates 2nd order noise shaping Asynchronous SAR ADC based TDC architecture with highest resolution of 0.25 ps among current state of art designs with respect to post-layout simulation results. This circuit is a combination of low power/High Resolution 2nd Order Noise Shaped Asynchronous SAR ADC backend with simple Time to Amplitude converter (TAC) front-end and is implemented in 40nm CMOS technology. Additionally, special emphasis is given on the discussion on various current state of art TDC architectures.Electrical and Computer Engineerin
Water quality monitoring: a ‘toolbox’ in response to the EU’s Water Framework Directive requirements
International audienc
A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver
A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud
\u
Recommended from our members
Advanced Acoustic Technologies for the Monitoring and Management of Sustainable Fisheries: A Practice Manual
- …
