7,067 research outputs found

    Renormalization as a functor on bialgebras

    Get PDF
    The Hopf algebra of renormalization in quantum field theory is described at a general level. The products of fields at a point are assumed to form a bialgebra B and renormalization endows T(T(B)^+), the double tensor algebra of B, with the structure of a noncommutative bialgebra. When the bialgebra B is commutative, renormalization turns S(S(B)^+), the double symmetric algebra of B, into a commutative bialgebra. The usual Hopf algebra of renormalization is recovered when the elements of B are not renormalised, i.e. when Feynman diagrams containing one single vertex are not renormalised. When B is the Hopf algebra of a commutative group, a homomorphism is established between the bialgebra S(S(B)^+) and the Faa di Bruno bialgebra of composition of series. The relation with the Connes-Moscovici Hopf algebra of diffeomorphisms is given. Finally, the bialgebra S(S(B)^+) is shown to give the same results as the standard renormalisation procedure for the scalar field.Comment: 24 pages, no figure. Several changes in the connection with standard renormalizatio

    Vertices of Specht modules and blocks of the symmetric group

    Get PDF
    This paper studies the vertices, in the sense defined by J. A. Green, of Specht modules for symmetric groups. The main theorem gives, for each indecomposable non-projective Specht module, a large subgroup contained in one of its vertices. A corollary of this theorem is a new way to determine the defect groups of symmetric groups. We also use it to find the Green correspondents of a particular family of simple Specht modules; as a corollary, we get a new proof of the Brauer correspondence for blocks of the symmetric group. The proof of the main theorem uses the Brauer homomorphism on modules, as developed by M. Brou{\'e}, together with combinatorial arguments using Young tableaux.Comment: 18 pages, 1 figur

    Noncommutative Bell polynomials, quasideterminants and incidence Hopf algebras

    Full text link
    Bell polynomials appear in several combinatorial constructions throughout mathematics. Perhaps most naturally in the combinatorics of set partitions, but also when studying compositions of diffeomorphisms on vector spaces and manifolds, and in the study of cumulants and moments in probability theory. We construct commutative and noncommutative Bell polynomials and explain how they give rise to Fa\`a di Bruno Hopf algebras. We use the language of incidence Hopf algebras, and along the way provide a new description of antipodes in noncommutative incidence Hopf algebras, involving quasideterminants. We also discuss M\"obius inversion in certain Hopf algebras built from Bell polynomials.Comment: 37 pages, final version, to appear in IJA
    • …
    corecore