4,123 research outputs found

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant Īµ>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+ĪµW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+Īµ)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logā”n)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Planar Ultrametric Rounding for Image Segmentation

    Full text link
    We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of an LP relaxation of ultrametric rounding. To solve this LP efficiently we introduce a dual cutting plane scheme that uses minimum cost perfect matching as a subroutine in order to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentation

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) ā†’ R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members ā€” that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ā‰„ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph
    • ā€¦
    corecore