5 research outputs found

    Author index to volume 2

    Get PDF

    On the approximation of Min Split-coloring and Min Cocoloring

    Full text link

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Structural solutions to maximum independent set and related problems

    Get PDF
    In this thesis, we study some fundamental problems in algorithmic graph theory. Most natural problems in this area are hard from a computational point of view. However, many applications demand that we do solve such problems, even if they are intractable. There are a number of methods in which we can try to do this: 1) We may use an approximation algorithm if we do not necessarily require the best possible solution to a problem. 2) Heuristics can be applied and work well enough to be useful for many applications. 3) We can construct randomised algorithms for which the probability of failure is very small. 4) We may parameterize the problem in some way which limits its complexity. In other cases, we may also have some information about the structure of the instances of the problem we are trying to solve. If we are lucky, we may and that we can exploit this extra structure to find efficient ways to solve our problem. The question which arises is - How far must we restrict the structure of our graph to be able to solve our problem efficiently? In this thesis we study a number of problems, such as Maximum Indepen- dent Set, Maximum Induced Matching, Stable-II, Efficient Edge Domina- tion, Vertex Colouring and Dynamic Edge-Choosability. We try to solve problems on various hereditary classes of graphs and analyse the complexity of the resulting problem, both from a classical and parameterized point of view
    corecore