5 research outputs found

    Partitioned Iterated Function Systems with Division and a Fractal Dependence Graph in Recognition of 2D Shapes

    Get PDF
    One of the approaches in pattern recognition is the use of fractal geometry. The property of self-similarity of fractals has been used as a feature in several pattern recognition methods. All fractal recognition methods use global analysis of the shape. In this paper we present some drawbacks of these methods and propose fractal local analysis using partitioned iterated function systems with division. Moreover, we introduce a new fractal recognition method based on a dependence graph obtained from the partitioned iterated function system. The proposed method uses local analysis of the shape, which improves the recognition rate. The effectiveness of our method is shown on two test databases. The first one was created by the authors and the second one is the MPEG7 CE-Shape-1 PartB database. The obtained results show that the proposed methodology has led to a significant improvement in the recognition rate

    Star-shaped Set Inversion Fractals

    Get PDF
    In the paper, we generalized the idea of circle inversion to star-shaped sets and used the generalized inversion to replace the circle inversion transformation in the algorithm for the generation of the circle inversion fractals. In this way, we obtained the star-shaped set inversion fractals. The examples that we have presented show that we were able to obtain very diverse fractal patterns by using the proposed extension and that these patterns are different from those obtained with the circle inversion method. Moreover, because circles are star-shaped sets, the proposed generalization allows us to deform the circle inversion fractals in a very easy and intuitive way

    An Approach to Determine the Features of Dental X-ray Images Based on the Fractal Dimension

    Get PDF
    Applications of the fractal dimension include the analysis and interpretation of medical images. The article presents a method for determining image features that are based on fractal dimension. In the proposed method, an optimization process (modified semi-multifractal optimization algorithm) creates a division into sub-areas similarly to a multi-resolution method. Using this division, a characteristic spectrum based on the fractal dimensions is calculated. This spectrum is applied to the recognition method of X-ray images of teeth. The obtained experimental results showed that the proposed method can effectively recognize such images

    Partitioned iterated function systems with division and a fractal dependence graph in recognition of 2D shapes

    No full text
    One of the approaches in pattern recognition is the use of fractal geometry. The property of self-similarity of fractals has been used as a feature in several pattern recognition methods. All fractal recognition methods use global analysis of the shape. In this paper we present some drawbacks of these methods and propose fractal local analysis using partitioned iterated function systems with division. Moreover, we introduce a new fractal recognition method based on a dependence graph obtained from the partitioned iterated function system. The proposed method uses local analysis of the shape, which improves the recognition rate. The effectiveness of our method is shown on two test databases. The first one was created by the authors and the second one is the MPEG7 CE-Shape-1PartB database. The obtained results show that the proposed methodology has led to a significant improvement in the recognition rate
    corecore