2 research outputs found

    Partitioned Paxos via the Network Data Plane

    Get PDF
    Consensus protocols are the foundation for building fault-tolerant, distributed systems, and services. They are also widely acknowledged as performance bottlenecks. Several recent systems have proposed accelerating these protocols using the network data plane. But, while network-accelerated consensus shows great promise, current systems suffer from an important limitation: they assume that the network hardware also accelerates the application itself. Consequently, they provide a specialized replicated service, rather than providing a general-purpose high-performance consensus that fits any off-the-shelf application. To address this problem, this paper proposes Partitioned Paxos, a novel approach to network-accelerated consensus. The key insight behind Partitioned Paxos is to separate the two aspects of Paxos, agreement, and execution, and optimize them separately. First, Partitioned Paxos uses the network forwarding plane to accelerate agreement. Then, it uses state partitioning and parallelization to accelerate execution at the replicas. Our experiments show that using this combination of data plane acceleration and parallelization, Partitioned Paxos is able to provide at least x3 latency improvement and x11 throughput improvement for a replicated instance of a RocksDB key-value store

    Implementing ChaCha based crypto primitives on programmable SmartNICs

    Get PDF
    Control and management plane applications such as serverless function orchestration and 4G/5G control plane functions are offloaded to smartNICs to reduce communication and processing latency. Such applications involve multiple inter-host interactions that were traditionally secured using SSL/TLS gRPC-based communication channels. Offloading the applications to smartNIC implies that we must also offload the security algorithms. Otherwise, we need to send the application messages to the host VM/container for crypto operations, negating offload benefits. We propose crypto externs for Netronome Agilio smartNICs that implement authentication and confidentiality (encryption/decryption) using the ChaCha stream cipher algorithm. AES and ChaCha are two popular cipher suites, but we chose ChaCha since none of the smartNICs have ChaCha-based crypto accelerators. However, smartNICs have restricted instruction set, and limited memory, making it difficult to implement security algorithms. This paper identifies and addresses several challenges to implement ChaCha crypto primitives successfully. Our evaluations show that our crypto extern implementation satisfies the scalability requirement of popular applications such as serverless management functions and host in-band network telemetry. © 2022 ACM
    corecore