
Implementing ChaCha Based Crypto Primitives on
Programmable SmartNICs

Shaguftha Zuveria Kottur
IIIT Delhi, India

shaguftha21079@iiitd.ac.in

Krishna Kadiyala
Texas Christian University, USA

k.kadiyala@tcu.edu

Praveen Tammana
IIT Hyderabad, India

praveent@cse.iith.ac.in

Rinku Shah
IIIT Delhi, India
rinku@iiitd.ac.in

ABSTRACT
Control andmanagement plane applications such as serverless func-
tion orchestration and 4G/5G control plane functions are offloaded
to smartNICs to reduce communication and processing latency.
Such applications involve multiple inter-host interactions that were
traditionally secured using SSL/TLS gRPC-based communication
channels. Offloading the applications to smartNIC implies that we
must also offload the security algorithms. Otherwise, we need to
send the application messages to the host VM/container for crypto
operations, negating offload benefits.

We propose crypto externs for Netronome Agilio smartNICs
that implement authentication and confidentiality (encryp-
tion/decryption) using the ChaCha stream cipher algorithm.
AES and ChaCha are two popular cipher suites, but we chose
ChaCha since none of the smartNICs have ChaCha-based crypto
accelerators. However, smartNICs have restricted instruction set,
and limited memory, making it difficult to implement security
algorithms. This paper identifies and addresses several challenges
to implement ChaCha crypto primitives successfully. Our evalu-
ations show that our crypto extern implementation satisfies the
scalability requirement of popular applications such as serverless
management functions and host in-band network telemetry.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; • Security and privacy → Security protocols;

KEYWORDS
SmartNICs, in-network crypto primitives, ChaCha algorithm, pro-
grammable data planes

ACM Reference Format:
Shaguftha Zuveria Kottur, Krishna Kadiyala, Praveen Tammana, and Rinku
Shah. 2022. Implementing ChaCha Based Crypto Primitives on Pro-
grammable SmartNICs. In ACM SIGCOMM 2022 Workshop on Formal
Foundations and Security of Programmable network INfrastructure (FFSPIN
’22), August 22, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3528082.3544833

1 INTRODUCTION
Recent advancements in programmable data plane devices (e.g.,
programmable switches, smartNICs) have created opportunities to
save precious CPU cycles and achieve low latencies by offloading
applications to these devices [28, 32, 42]. Since smartNICs stay close

to the message data path, processing delays in host/VM/container’s
network stack can be avoided.

Many recent works leverage this opportunity and offloaded con-
trol and management applications [18, 25, 38, 39, 56] to smartNICs.
By doing so, they observe a significant reduction in latency (i.e.,
Round Trip Times (RTTs)) and savings in CPU usage. Some example
offloaded applications are distributed orchestrator for serverless
applications [25, 39], failover manager [39], load balancer [25], con-
sensus manager [38], and replication manager [38].

Most of these applications are distributed across multiple
VMs/containers and exchange control messages frequently. Prior to
offloading control/management applications to smartNICs, frame-
works such as gRPC with built-in SSl/TLS library [12] were used
to secure communication of application control messages. Thus,
when offloading such applications, we need similar crypto-based
security frameworks on smartNICs. Otherwise, the smartNIC will
forward the control messages to the application VM/container for
crypto operations, defeating the purpose of reducing latencies and
saving host CPU cycles. Therefore, application offloads bring a
trade-off between security and performance.

To secure offloaded application’s communication, one popular
crypto algorithm available on today’s smartNICs is the AES-GCM
block cipher. However, there is much less attention to alternate
stream ciphers, such as the ChaCha cipher. Currently, the Nvidia
BlueField NICs [10] support hardware public key accelerators using
AES-GCM cipher suite. The ChaCha algorithm is an Add-Rotate-
XOR (ARX) cipher with a CPU-friendly design that provides the
same or better level of security as AES [48]. ChaCha is faster than
the AES cipher as a result of the ARX operations, and has been
designed to be resistant to side-channel cache-timing attacks [43].

In this paper, we design ChaCha-based crypto primitives (or
APIs) on smartNIC to enable authentication, encryption, and de-
cryption of applicationmessages offloaded to the smartNIC, without
the use of hardware co-processors. We program the Netronome’s
pipeline using P4/micro-C to support ChaCha primitives inline,
such that there are no digressions in the packet processing flow.
However, Netronome smartNICs have restricted instruction set
and limited memory, making it challenging to implement complex
crypto operations. In our work here, we identify and address several
such challenges and successfully implement ChaCha-based crypto
primitives on Netronome smartNIC.
The key contributions of this paper are as follows:

15

https://doi.org/10.1145/3528082.3544833


FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Kottur et al.

(1) To motivate the need for in-network crypto primitives, we iden-
tify the applications offloaded to smartNICs that benefit from using
these crypto primitives.
(2) We identify and address the challenges in implementing the
ChaCha algorithm for authentication and confidentiality over
Netronome smartNICs.
(3) Performance evaluation of ChaCha algorithm offloaded to
Netronome smartNICs.

2 BACKGROUND & MOTIVATION
We now describe the use cases, the threat model, and motivation of
this work.
Usecase. In serverless computing, there are two main components:
(1) Serverless Functions (SFs) that comprise several microservices
that can either run serially, in parallel, or a combination of both;
and (2) The management applications such as an orchestrator and a
load balancer that manage the execution of these SFs. For instance,
an SF consists of several microservices, and each microservice runs
on individual containers. These containers communicate with an
orchestrator indicating the outcome such as completion, output
state, or an error message. The orchestrator uses these messages
to invoke the dispatcher and the load balancer to start the next
microservice in the SF’s workflow. Traditionally, these messages
are communicated using a secure gRPC-based SSL/TLS channel.

Table 1 shows the list of applications that have demonstrated
performance benefits via offloading processing to smartNICs. We
must secure the control messages in such offloaded systems; oth-
erwise, the system is vulnerable to attacks on confidentiality and
authentication.
Threat model. Compromised VMs/containers in a cloud environ-
ment are vulnerable to posing a threat to other VMs or containers
[34, 36, 37, 52, 55]. We make the following assumptions - 1. We do
not trust the VMs or containers as they can run untrusted code
from external users. 2. When the application (e.g. Orchestrator)
is offloaded to smartNIC, the messages exchanged between the
smartNIC and the VM/container (microservices) are sent in plain
text. In terms of attacks, an adversary can listen to messages if a
microservice (general-purpose user-written code) is compromised.
Another possible attack is that if one of the servers is compromised
at a hypervisor level (e.g., by installing a backdoor), the adversary
can listen to all the state messages of all VMs/Containers running
on the server.
Motivation for Chacha20.We rely on encryption algorithms or
“ciphers” to guarantee data privacy, security, authentication, and
integrity. Ciphers that use the same key for encryption and de-
cryption are symmetric ciphers; they can further be classified into
block ciphers and stream ciphers. Data Encryption Standard (DES)
and Advanced Encryption Standard (AES) are two commonly seen
block ciphers, while Rivest Cipher (RC4), Salsa, and ChaCha20 are
examples of stream ciphers. ChaCha is designed for high perfor-
mance (as it requires few resources and inexpensive operations)
and to prevent leakage of information through side-channel attacks
[17]. Currently, TLS 1.3 [51] supports both the AES-GCM cipher
and ChaCha20/Poly1305 ciphers. A recent work (L5o [49]) offloads
TLS/AES-GCM processing (encryption/decryption/authentication)

to smartNIC. This paper complements these efforts by offloading
ChaCha-based algorithms to Netronome smartNICs.

3 DESIGN & IMPLEMENTATION
3.1 Design choices
When it comes to offloading a functionality such as ChaCha onto
smartNICs, the available design choices can be categorized as fol-
lows:

(1) Fastest path - offload chacha functionality using a hardware
accelerator on the smartNIC

(2) Slower path - offload chacha functionality leveraging NIC
cores

(3) Slowest path - offload chacha functionality relying on a com-
bination of NIC cores + host CPU cores

As seen here, we do not want to send the crypto functionality
to the host CPU cores since it is the slowest path for offloading en-
cryption/decryption tasks. At the same time, however, no hardware
accelerators are currently available that implement the ChaCha al-
gorithm, which renders the first design choice not viable either. This
leads us to the natural design choice of implementing the algorithm
in the processing pipeline (without using hardware co-processors)
of the on-path smartNIC. We refer interested readers to section
§A.2 in the Appendix for further reading on On-path and Off-path
smartNICs. In this paper, we make a case that the smartNIC cores
can support the implementation of the ChaCha algorithm. We de-
sign the ChaCha algorithm and carry out experiments to support
this claim.

3.2 The ChaCha algorithm

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Qround 6 Qround 7 Qround 8

   1.  a += b; d ^= a; d <<<= 16;

   2.  c += d; b ^= c; b <<<= 12;

   3.  a += b; d ^= a; d <<<= 8;

   4.  c += d; b ^= c; b <<<= 7;

ChaCha8 block

512-bit
cipher text

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Qround 2 Qround 3 Qround 4Qround 1
Qround 5

Qround 6

Qround 7

Qround 8

'N' Qrounds for 

ChaCha<N>

Qround implementation

constant

0

constant

1

constant

2

constant

3

32b 32b 32b 32b

key

4

key

5

key

6

key

7

key

8

key

9

key

10

key

11

counter

12

nonce

13

nonce

14

nonce

15

State Initialisation

512-bit keystream

512-bit
plain text

Figure 1: ChaCha algorithm for encryption and decryption.

ChaCha [44] is a 256-bit stream cipher technique that uses the
same key for encryption and decryption. Figure 1 shows the work-
ing of the ChaCha algorithm. The inputs to the ChaCha algorithm
are a 256-bit key, a 96-bit nonce (pseudo-random number), and a
32-bit block counter.

16



Implementing ChaCha Based Crypto Primitives on Programmable SmartNICs FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

Table 1: Example Applications

Applications that can be offloaded to SmartNICs Communicated message details Message state that requires protection

Serverless computing

Gateway application [20] Sends execution request to specific NIC Packet header with microservice identifier
Distributed orchestrator [25, 39] Receives workflow progress updates from worker

nodes
Serverless workflow’s progress state

Dispatcher application [25] Requests execution of a particular SF Current SF output, worker node identifier for the next function
in the workflow

Load balancer [25] Receives utilization metrics from worker nodes Utilization metrics
Failover manager[39] Periodic monitor Health statistics of serverless cluster

Replication Manager [39], [38] Replicate state for failover Replicated state (Serverless application: Workflow progress
state, execution results, worker metadata)

Host In-band Network Telemetry [46] send/receive per-flow telemetry packets telemetry state
Consensus protocol [38], [24], Distributed transactions [38] Agreement protocol messages between the proposer,

acceptors, and learner
Paxos protocol message state (Phase1, Phase2), proposed value

Real-time analytics [38] Top-n data from workers to an aggregator Top-n data
Congestion-aware load balancing at the host hypervisor [30] ECN messages communicated between the hypervi-

sors that host VMs
ECN messages

State initialization. The ChaCha state is initialized with (a) four
constant 32-bit words, (b) eight 32-bit key words, (c) a 32-bit block
counter, and (d) three nonce words (96 bits). The incoming message
of arbitrary length is divided into 16-word (512-bit) blocks, and
appropriate padding bits are appended if the message length is not
a multiple of 8 words. The counter is incremented by one for each
message block.
ChaCha rounds. For every message block (plaintext/ciphertext),
the input state matrix is transformed by alternating column quarter
round and a diagonal quarter round. The figure shows that each
quarter round (Qround) updates four 32-bit state words (viz., a,
b, c, d) using 4 additions, 4 XOR operations, and 4 rotations. The
ChaCha<N> algorithm performs a total of N quarter rounds. For
example, ChaCha20 performs 10 column rounds and 10 diagonal
rounds. The result of each message block is added to the 16-word
(512-bit) output block to generate the 16-word keystream.
ChaCha encryption/decryption. For every message block (plain-
text/ciphertext), the 16 words of the keystream are XORed to the
16 words of plaintext/ciphertext to obtain 16 words of cipher-
text/plaintext.
3.3 Realizing ChaCha crypto algorithms
Wenowdescribe the challenges, the design choices, the assumptions
made to overcome these challenges, and the implementation of
crypto primitives.

We define primitives as abstractions that a P4 or micro-C data
plane programmer could leverage in her offloaded program for
secure communication between the network end-points (smart-
NIC). We implement these abstractions using the ChaCha crypto
algorithms and CRC-32 hash functions for the Netronome CX4000
backend. We plan to expose these abstractions as a rich API library
as part of future work.

3.3.1 Design challenges. The implementation of the ChaCha
algorithm for encryption/decryption, given the NIC hardware limi-
tations such as constrained instruction set and limited processing
and storage capabilities, is challenging. We address the following
challenges in this paper.
(a) Initial nonce generation. Nonces are random or pseudo-
random numbers that are used by cryptography algorithms to
secure communications from replay attacks. The nonce chosen for
consecutive packets should be different; otherwise, the implemen-
tation is susceptible to chosen-plaintext attacks. The Netronome
smartNIC has 48 micro engines (MEs), and each ME is loaded with
the ChaCha program and processes packets independently.We need

to ensure that each ME uses a different nonce so that the implemen-
tation is not susceptible to a chosen-plaintext attack. We address
this challenge by using the intrinsic function ME() [59] to initialize
the value of the nonce. The function ME() provides a 32-bit unique
identifier for the micro engine. The ChaCha20 standards [44] rec-
ommend a 96-bit nonce. If the micro engine’s identifier is ’x’, we
generate the 96-bit unique initial nonce for each ME as the concate-
nation, concat(x, x, x). Therefore, our implementation is resistant
to chosen-plaintext vulnerability.
(b) Pseudo-random number generation.We resolved the pre-
vious challenge by using a unique identifier for each ME for the
first time, but the nonce has to be generated for the next set of mes-
sages too. We resolve this problem based on the observation that
ChaCha is inherently a pseudo-random number generator. After
encrypting a message, we use the 96 bits from the unused ChaCha
keystream as the nonce for the next packet. That is, we use the
initial nonce (using ME()) to encrypt the first packet and the unused
96-bit keystream bits as the nonce for the consecutive packets for
resistance to chosen-plaintext attacks.
(c) Complex operations involved in ChaCha’s authentication
algorithm.Thewidely used authentication algorithmwith ChaCha
is Poly-1305. The Netronome NIC hardware does not support mod-
ulo operations used by Poly-1305. However, the NIC supports the
CRC-32 [1] algorithm, but it is neither keyed nor collision-proof.
That is, an attacker might be able to generate an alternative message
that satisfies the checksum. We secure the computed hash using
ChaCha encryption to overcome such probabilistic chosen-plaintext
attacks. As part of future work, we plan to use approximation data
structures to implement Poly-1305.

3.3.2 Assumptions. (1) We share the initial ChaCha secret
key with the smartNICs using an SSL/TLS-based secure channel
between the agent running in host CPU (control plane) and the
smartNIC. We assume that the secure OpenSSL version (>1.0.1) [2]
is used for secure communication. (2) ChaCha20 is considered to be
secure as there are no proven attacks. However, there are attacks
on up to 8 rounds of ChaCha based on differential cryptanalysis [14,
16, 21, 22, 26, 27, 40]. Our ChaCha implementation uses 10 rounds
for a secure, lightweight, in-network solution.

3.3.3 Implementation of crypto primitives. We support the
following crypto primitive:

(1) Encryption. The primitive, ENC indicates encryption of an
input message.

17



FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Kottur et al.

control plane

Host SmartNIC in a data center network

P

A

R

S

E

R

keystream generator

constant

counter nonce

D

E

P

A

R

S

E

R

SSL/TLS

ChaCha10 crypto algorithm
incoming
packet 


(plain text)
outgoing packet 


(AUTH_set+ENC)

compute
hash

keystream

message for crypto processing

32-bit hash

initial
nonce

ChaCha key

Figure 2: Implementation of AUTH_set+ENC us-
ing ChaCha10 algorithm for Netronome smartNIC
(AUTH_test+DEC looks similar).

(2) Decryption. The primitive, DEC indicates the decryption
of an input message.

(3) Authentication.We support two authentication primitives,
AUTH_set and AUTH_test. AUTH_set generates the secure
hash for the message, and AUTH_test validates the input
message for authentication and integrity.

We also support compound primitives such as AUTH_set +
ENC and AUTH_test + DEC. Figure 2 shows the components in-
volved in the implementation of ChaCha10 algorithm for authenti-
cation, encryption, and decryption primitives on the Netronome
smartNIC data plane. We program the parser, match action tables,
ingress/egress logic, and the deparser using P4 language, whereas
the ChaCha encryption, decryption, and authentication algorithms
are implemented in themicro-C language.We usemicro-C language
for the constructs that are either not supported in P4 language or if
the P4 implementation is complex. For example, we cannot get the
ME identifiers using P4.

The first step in the ChaCha algorithm is state initialization. The
keystream generator has the following inputs, the ChaCha secret
key, nonce, counter, and a constant. The ChaCha secret is initial-
ized using an SSL/TLS-based secure channel as discussed in §3.3.2.
The counter is reset to 0 for each input message and incremented
for each 512-bit message block. The initial and consecutive nonce
initialization for message encryption is described in §3.3.1. That
is, during the encryption process, the first message uses the ME
identifier for the nonce, and after that, each message uses the un-
used keystream bits of the previous message. During the decryption
process, the nonce is parsed from the packet header.

For encryption, we use the ChaCha10 algorithm [17, 45] (more
details in §3.3.2) to generate the keystream. The keystream genera-
tor generates a 512-bit keystream for each message block (512 bits).
The message and/or the hash are encrypted by XORing with the
keystream. The XOR process is done in blocks of 32-bits since the
Netronome NIC supports 32-bit words (32-bit ARM processor). For
decryption, the nonce is parsed from the packet header, whereas
the other parameters of the ChaCha10 state, viz., ChaCha secret key,
counter, and constant, are initialized as discussed in the encryption

Parser Authentication

required?

input 

headers/metadata

No

Yes Compute
message hash
(custom_crc32)

Process packet
forwarding logicDeparser output 


headers/metadata
Confidentiality


required?

Encrypt message

No

Yes

Encrypt hash

metadata + 

32-bit hash

Initialise state

128-bit constant,

96-bit nonce,

32-bit counter,

256-bit key


more message 
blocks ?

No

Yes
count+=1

state Generate 64-byte
keystream

XOR 64-byte message
block with keystream

continue

Figure 3: Workflow of AUTH_set, ENC, and AUTH_set+ENC
primitives using ChaCha.

process. Since ChaCha is a stream cipher, the decryption process is
similar to the encryption process.

The Netronome NIC does not support cryptographic hash func-
tions. To implement authentication, we use the non-cryptographic
hash function, CRC-32, and secure it with ChaCha encryption
(see §3.3.1). We use custom_crc32 accelerator for hashing due to its
resistance to performance degradation at high loads as compared
to other available hash functions [57]. The custom_crc32 function
takes a maximum of 64 bytes of data for hashing; therefore, we
incrementally take 64-byte blocks from the packet header and the
message to calculate the final 32-bit hash.

We have further tested the correctness of our implementation as
follows. We first encrypt the message on the SmartNIC, followed
by decryption on the SmartNIC, and compare the decrypted mes-
sage with the original message on the host machine. Fig. 3 shows
the workflow for an incoming message. The P4 parser program
parses the packet headers to derive the message and the requested
crypto primitive. If AUTH_set or AUTH_test flag is set, the input
message is hashed using custom_crc32. If the ENC or DEC flag is
set, ChaCha10 encryption or decryption process is computed by
repeating the algorithm for each 64-byte message block with the
incremented counter value. Fig. 8 in Appendix shows the packet
format of a message with information about the crypto primitives
requested by the application and the corresponding parameter val-
ues.
4 EVALUATION
We designed our experiments to answer the following questions. (1)
How does our crypto primitive implementation perform compared
to the baselines? (2) Which class of applications will benefit by
leveraging these crypto primitives? (3) After implementing the
crypto primitives on the SmartNIC, how much memory is available
to offload other applications?
Experiment setup. All our experiments are on two machines with
AMD Ryzen 9 5950X (3.4 GHz, 16 cores, 32 threads) processor and
32GB RAM. The first machine ran a DPDK-based load generator
application (dpdk-21.11), pktgen 21.11 [4], that generates IP pack-
ets with configurable message sizes. We ensure that the generated

18



Implementing ChaCha Based Crypto Primitives on Programmable SmartNICs FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

 0

 5

 10

 15

 20

64B 128B 256B

Host-INT

Serverless

T
h
ro

u
g
h

p
u

t 
(m

e
s
s
a
g

e
s
 p

e
r 

s
e
c
 x

 1
0

6
)

Message size (in bytes)

Baseline:NIC

19.2

16.3

13.4

AUTH_set

6.3
6.0 5.8

ENC

6.8

4.6

2.9

AUTH_set + ENC

4.6

3.3

2.3

AUTH_test

6.8
6.4

6.1

DEC

7.0

4.6

3.0

AUTH_test + DEC

4.8

3.4

2.4

Baseline:Host

0.1 0.1 0.1

(a)

 0

 50

 100

 150

 200

 250

64B 128B 256B

M
e

s
s
a

g
e

 p
ro

c
e

s
s
in

g
 l
a

te
n

c
y
 (

u
s
)

Message size (in bytes)

Baseline:NIC
AUTH_set

ENC

AUTH_set + ENC
AUTH_test

DEC

AUTH_test + DEC
Baseline:Host

(b)

Figure 4: (a) Expected control plane message rate (CPMR) is in the range of 100 to 3M requests per sec; crypto processing
throughput at the host ranges from 71K to 94K requests per sec; our implementation meets the expected CPMR. (b) Processing
latency of the primitives ranges between 21 𝜇𝑠 to 170 𝜇𝑠 (∼ 83% lower than processing at the host).

traffic rate is enough to saturate the network card in all experi-
ments unless mentioned otherwise. A P4 program is written on the
SmartNIC to add the primitive header as shown in Figure 8 in the ap-
pendix. The second machine hosts Netronome Agilio CX 40 Gbit/s
dual-port SmartNIC [3] on which our ChaCha10 crypto primitive
program is offloaded. We provide two baselines to demonstrate the
performance bounds of our system. A simple L2 forward program
on the smartNIC copies the packet from ingress to the egress port
and does not involve crypto computations. This program provides
the performance upper bound, and we call it baseline:NIC. We also
evaluate the performance of the ChaCha algorithm (ENC primitive)
that runs on the host CPU inside a container to demonstrate the
crypto processing overheads when the NIC does not support crypto.
This program provides the performance lower-bound, and we call
it baseline:Host
Parameters and metrics. We generate different traffic load levels
and message sizes by configuring the parameters of the pktgen
application. All results reported are for an experiment conducted
for 180 seconds. The performance metrics measured are throughput
(messages per sec) and processing latency (𝜇𝑠𝑒𝑐). The throughput
was reported by the pktgen application. The ingress and egress
timestamps (in nanoseconds) were added to the packet headers
using Netronome’s extern functions to compute processing latency.
Results. Fig. 4(a) and Fig. 4(b) show the saturation throughput
and the corresponding processing latency for various packet sizes.
Our system requires parsing of the packet payload to apply crypto
primitives, and the Netronome smartNIC parser has constrained
memory to store packet headers. Therefore, our system is limited
to process message size of 256 bytes.

The AUTH_set primitive provides 3×, 2.7×, and 2.3× lower
throughput than baseline:NIC for 64-byte, 128-byte, and 256-byte
packet sizes, respectively. The ENC primitive provides 2.8×, 3.5×,
and 4.6× lower throughput than baseline:NIC for 64-byte, 128-byte,
and 256-byte packet sizes, respectively. The AUTH_set+ENC
primitive provides 4.2×, 4.9×, and 5.8× lower throughput than
baseline:NIC for 64-byte, 128-byte, and 256-byte packet sizes,

respectively. We observe similar trends in AUTH_get, DEC,
AUTH_get+DEC, and message processing latency.

However, our in-network crypto-system demonstrates 67× to
81× better throughput and ∼83% lower latency compared to base-
line:Host.
Observations. We observe that these throughput numbers would
satisfy most of the offloaded applications. To be specific, the API
invocation rate is 100 requests per sec [9] for serverless functions.
With a maximum of 1000 containers [50] or 200 VMs [13] per
server, the required crypto throughput ranges between 20K to 100K
requests per second. Our authentication (AUTH_set) throughput
is 6M messages per second and can support up to 60K serverless
workflows, much higher than what is required. Consider the state
replication use case for one of the popular key-value stores, Twitter.
Only 10% of the total traffic requires state replication [15] which
indicates that our system can scale linearly. Similarly, consider one
INT packet is generated per flow. With 3.3M flows per second at a
server [35, 47], our primitives can easily process them.

We varied the input load in another experiment and observed
the corresponding message processing throughput to understand
system scalability. We observed that the baseline:NIC program
scaled linearly, and we observed the saturation throughput of ∼
19M messages/sec, while the AUTH_set and ENC primitives scaled
linearly at low loads (up to 20% load) with observed throughput
of ∼ 4M messages per second; and the saturation throughput of ∼
6.8M messages per sec. The AUTH_set+ENC primitive does not
scale linearly and saturates at ∼ 4M messages per second.

The memory classes supported by Netronome smartNIC include:
(1) the local memory (LM) register is used for data that is used in ev-
ery packet; (2) The cluster local scratch (CLS) is used for data, which
is needed for most packets and small shared tables; (3) The cluster
target memory (CTM) is used for packet headers and coordination
between other sub-systems; (4) The internal memory (IMEM) is
used for packet bodies and medium-sized shared tables; and (5) The
external memory (EMEM) is used for large shared tables.

Figure 5 shows that even after implementing crypto primitives
on the NIC, we have free memory resources of up to 44% LM, up to

19



FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Kottur et al.

 0

 10

 20

 30

 40

 50

 60

 70

LM CLS CTM IMEM EMEM

M
e
m

o
ry

 u
ti
liz

a
ti
o
n
 (

in
 %

a
g
e
)

Memory types for Netronome CX-4000

Baseline:NIC
64B

128B
256B

Figure 5: Available memory for other offloads is up to 90%.

67% of CLS, 55% CTM, 81% IMEM, and 90% EMEM. Note that LM and
CLS utilization increases for larger message sizes due to additional
memory to store the payload and crypto code. Although, the CTM,
IMEM, and EMEM utilization is constant as crypto processing does
not use tables. The offloaded applications that utilize the crypto
primitives can use the free memory to store the code, packet data,
and shared tables (both small and large).

5 RELATEDWORK
With the rise of Programmable Data Planes (PDPs), a multitude of
researchers have extensively looked into authentication and con-
fidentiality implementations on programmable hardware such as
Barefoot Tofino or smartNICs. The authors of P4Knocking [61]
present the implementation of a port knocking-based authentica-
tion mechanism as a network function that can be offloaded to
PDPs. Anonymization implementations in the PDP [31] include im-
plementations on Barefoot Tofino such as ONTAS [33] that enables
anonymization of packet fields to hide Personally Identifiable In-
formation addresses, PANEL[41] manipulates certain header fields
to anonymize user information and PINOT [58] obfuscates packet
headers of DNS traffic to disassociate client IP addresses from DNS
requests. Unlike these anonymization approaches, we rely on en-
cryption using the ChaCha algorithm to ensure that control packet
data are not identifiable by adversaries.

PDPs have limited resources and computational capabilities, in-
cluding a limited set of operations supported, which means that
sophisticated primitives for cryptography cannot be realized [29].
This challenge has motivated researchers to propose workarounds
that allow cryptographic functions to be implemented in PDP de-
vices. The authors of [60] present an implementation of a secure
keyed hash function, HalfSipHash, on Barefoot Tofino while [53]
implements SIP hash for three different P4 targets. In [19], the Ad-
vanced Encryption Standard (AES) algorithm is extended to PDPs
using the scrambled lookup table technique. Given the relatively
simpler operations required for the ChaCha algorithm than for AES,
we implement the algorithm on a Netronome Agilio SmartNIC and
perform experiments to show encryption and decryption using
ChaCha on messages up to 256 bytes long.

In terms of offloading cryptographic functions to smartNICs,
the work explored in [49] leverages the presence of hardware ac-
celerators on SmartNICs to offload TLS handshake and data path
encryption/decryption. Similarly, in [32], the TLS handshake and
TCP connection setup process are offloaded to the smartNIC while
the rest of the TCP stack runs on the host. The work presented here
is different from the existing research. We propose three crypto-
graphic primitives − encryption, decryption, and authentication,

using the ChaCha10 algorithm that is offloaded to the smartNIC
without leveraging hardware accelerators.

6 DISCUSSION
Crypto code placement. Due to constrained smartNIC resources,
the crypto code placement depends on whether the smartNIC has
enough CPU and memory resources to run crypto functions along-
side the offloaded applications. (1) If there are enough resources, we
should co-locate the crypto code and the offloaded applications on
the same smartNIC; (2) Otherwise, we should implement a bump-
in-the-wire design where the offloaded applications and the crypto
code run on two separate smartNICs, connected port-to-port via
physical cables.
Handling MTU size messages. As discussed earlier, our cur-
rent crypto implementation cannot handle messages longer than
256 bytes due to parser memory constraints. In our future work, we
plan to handle MTU size messages by using design options such as,
(1) reducing the number of threads per ME; (2) fragmenting packet
messages longer than 256 bytes; (3) accessing the message payload
without parsing.
Implement standard authentication algorithm. Our current
implementation does not use ChaCha’s standard authentication
algorithm, Poly-1305, as this algorithm uses modulus operation,
which is not supported by the smartNIC hardware. Therefore, our
system can be used to secure control and management messages
shared within the data center network without using standard
TLS connections. We plan to use approximation data structures to
implement Poly-1305 for message authentication as part of future
work.
API design. As part of future work, we plan to provide crypto
primitive APIs for confidentiality and authentication. The smartNIC
developers can invoke these APIs within the P4/micro C programs
that offload host applications. In our future work, we plan to design
a toolchain that preprocesses the crypto API calls and translates
the given source program to the target program.
Portable cryptosystem design. This work is tightly bound to the
target machine and is not simple to port. In our future work, we
plan to provide abstractions for target-dependent components and
design a portable cryptosystem.

7 CONCLUSION
We design and develop crypto primitives based on the ChaCha
algorithm for applications offloaded to the Netronome Agilio smart-
NIC. We address challenges while implementing the cryptographic
primitives - authentication, encryption, and decryption. From the
evaluations, we observe that our implementation meets the process-
ing rates required for control messages of offloaded applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback.
We thank Lasani Hussain for his contribution towards evaluation;
we also thankDr. Sambuddho Chakravarty, Dr. Pravein Kannan, and
Ranjitha K for their valuable comments on the earlier drafts. This
research is supported by NMICPS TiHAN IIT Hyderabad faculty
fellowship.

20



Implementing ChaCha Based Crypto Primitives on Programmable SmartNICs FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

REFERENCES
[1] 2005. Encryption and Checksum Specifications for Kerberos 5. https://curl.se/

rfc/rfc3961.txt. (February 2005).
[2] 2014. CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-

2014-0160. (April 2014).
[3] 2016. NFP-4000 Theory of Operation. https://www.netronome.com/static/app/

img/products/silicon-solutions/WP_NFP4000_TOO.pdf. (2016).
[4] 2016. Pktgen - Traffic Generator powered by DPDK. https://github.com/pktgen/

Pktgen-DPDK. (2016).
[5] 2018. Programming NFP with P4 and C. https://www.netronome.com/media/

documents/WP_Programming_with_P4_and_C.pdf. (2018).
[6] 2020. BCM5880X SmartNIC Solution User Guide. https://docs.broadcom.com/

doc/5880X-UG30X. (January 2020).
[7] 2020. Marvell LiquidIO™ III. https://www.marvell.com/content/dam/marvell/

en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-
brief .pdf. (September 2020).

[8] 2020. NVIDIA MELLANOX BLUEFIELD-2 HIGH PERFORMANCE ETHERNET
SMARTNIC. https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-
nic-eth.pdf. (August 2020).

[9] 2021. Lambda quotas. https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html. (2021).

[10] 2021. NVIDIA BLUEFIELD-3 DPU PROGRAMMABLE DATA CENTER
INFRASTRUCTURE ON-A-CHIP. https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf.
(2021).

[11] 2021. Protocol Numbers. https://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml. (April 2021).

[12] 2022. gRPC Authentication. https://grpc.io/docs/guides/auth. (February 2022).
[13] 2022. VMware Horizon 7 sizing limits and recommendations. https://

kb.vmware.com/s/article/2150348. (May 2022).
[14] Alexandre Adomnicai, Jacques JA Fournier, and Laurent Masson. 2017. Bricklayer

attack: A side-channel analysis on the chacha quarter round. In International
Conference on Cryptology in India. Springer, 65–84.

[15] Showan Esmail Asyabi. [n. d.]. A Survey on In-Memory KV Store Designs for
Today’s Data Centers. ([n. d.]).

[16] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. 2008. New Features of Latin Dances: Analysis of Salsa,
ChaCha, and Rumba. In Fast Software Encryption, Kaisa Nyberg (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 470–488.

[17] Daniel J. Bernstein. [n. d.]. ChaCha, a variant of Salsa20. ([n. d.]).
[18] Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku Shah,

and Mythili Vutukuru. 2021. Leveraging Programmable Dataplanes for a High
Performance 5G User Plane Function. Association for Computing Machinery, New
York, NY, USA, 57–64. https://doi.org/10.1145/3469393.3469400

[19] Xiaoqi Chen. 2020. Implementing AES Encryption on Programmable Switches via
Scrambled Lookup Tables. In Proceedings of the Workshop on Secure Programmable
Network Infrastructure (SPIN ’20). Association for Computing Machinery, New
York, NY, USA, 8–14. https://doi.org/10.1145/3405669.3405819

[20] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2019.
𝜆-NIC: Interactive Serverless Compute on Programmable SmartNICs. CoRR
abs/1909.11958 (2019). arXiv:1909.11958 http://arxiv.org/abs/1909.11958

[21] Arka Rai Choudhuri and Subhamoy Maitra. 2016. Significantly improved multi-
bit differentials for reduced round Salsa and ChaCha. IACR Transactions on
Symmetric Cryptology (2016), 261–287.

[22] Murilo Coutinho and TC Souza Neto. 2020. Newmulti-bit differentials to improve
attacks against ChaCha. Cryptology ePrint Archive (2020).

[23] Tianyi Cui, Wei Zhang, Kaiyuan Zhang, and Arvind Krishnamurthy. 2021. Of-
floading Load Balancers onto SmartNICs. Association for Computing Machinery,
New York, NY, USA, 56–62. https://doi.org/10.1145/3476886.3477505

[24] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman,
Hakim Weatherspoon, Marco Canini, Fernando Pedone, and Robert Soulé. 2019.
Partitioned Paxos via the Network Data Plane. CoRR abs/1901.08806 (2019).
arXiv:1901.08806 http://arxiv.org/abs/1901.08806

[25] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2021. Speedo: Fast
Dispatch and Orchestration of Serverless Workflows. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC ’21). Association for Computing Machin-
ery, New York, NY, USA, 585–599. https://doi.org/10.1145/3472883.3486982

[26] Kakumani KC Deepthi and Kunwar Singh. 2017. Cryptanalysis of Salsa and
ChaCha: revisited. In International Conference on Mobile Networks and Manage-
ment. Springer, 324–338.

[27] Sabyasachi Dey and Santanu Sarkar. 2017. Improved analysis for reduced round
Salsa and Chacha. Discrete Applied Mathematics 227 (2017), 58–69.

[28] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (NSDI’18).
USENIX Association, USA, 51–64.

[29] Qiao Kang, Jiarong Xing, and Ang Chen. 2019. Automated Attack Discovery
in Data Plane Systems. In 12th USENIX Workshop on Cyber Security Experi-
mentation and Test (CSET 19). USENIX Association, Santa Clara, CA. https:
//www.usenix.org/conference/cset19/presentation/kang

[30] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In Proceedings of the 13th International Conference on Emerg-
ing Networking EXperiments and Technologies (CoNEXT ’17). Association for
Computing Machinery, New York, NY, USA, 323–335. https://doi.org/10.1145/
3143361.3143401

[31] Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2021. An Exhaustive Survey
on P4 Programmable Data Plane Switches: Taxonomy, Applications, Challenges,
and Future Trends. (02 2021).

[32] Duckwoo Kim, SeungEon Lee, and KyoungSoo Park. 2020. A Case for SmartNIC-
Accelerated Private Communication. In 4th Asia-Pacific Workshop on Networking
(APNet ’20). Association for Computing Machinery, New York, NY, USA, 30–35.
https://doi.org/10.1145/3411029.3411034

[33] Hyojoon Kim and Arpit Gupta. 2019. ONTAS: Flexible and Scalable Online
Network Traffic Anonymization System. In Proceedings of the 2019 Workshop on
Network Meets AI & ML, NetAI@SIGCOMM 2019, Beijing, China, August 23, 2019.
ACM, 15–21. https://doi.org/10.1145/3341216.3342208

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/
SP.2019.00002

[35] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A
Better NetFlow for Data Centers. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 311–324. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/li-yuliang

[36] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen, Bingsheng He, and Minyi
Guo. 2021. The Serverless Computing Survey: A Technical Primer for Design
Architecture. CoRR abs/2112.12921 (2021). arXiv:2112.12921 https://arxiv.org/
abs/2112.12921

[37] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg, and Raoul Strackx. 2020. Meltdown: Reading Kernel Memory fromUser
Space. Commun. ACM 63, 6 (may 2020), 46–56. https://doi.org/10.1145/3357033

[38] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. 2019. Offloading Distributed Applications onto SmartNICs Using
IPipe. In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM ’19). Association for Computing Machinery, New York, NY, USA,
318–333. https://doi.org/10.1145/3341302.3342079

[39] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 363–378. https://www.usenix.org/
conference/atc19/presentation/liu-ming

[40] Subhamoy Maitra. 2016. Chosen IV Cryptanalysis on Reduced Round ChaCha
and Salsa. Discrete Appl. Math. 208, C (jul 2016), 88–97. https://doi.org/10.1016/
j.dam.2016.02.020

[41] HoomanMoghaddam and ArsalanMosenia. 2019. AnonymizingMasses: Practical
Light-weight Anonymity at the Network Level.

[42] Daniele Moro, Manuel Peuster, Holger Karl, and Antonio Capone. 2019. FOP4:
Function Offloading Prototyping in Heterogeneous and Programmable Net-
work Scenarios. In 2019 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). 1–6. https://doi.org/10.1109/NFV-
SDN47374.2019.9040052

[43] Zakaria Najm, Dirmanto Jap, Bernhard Jungk, Stjepan Picek, and Shivam Bhasin.
2018. On Comparing Side-channel Properties of AES and ChaCha20 on Microcon-
trollers. In 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
552–555. https://doi.org/10.1109/APCCAS.2018.8605653

[44] Y. Nir. 2015. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539. RFC Editor.
https://datatracker.ietf .org/doc/html/rfc7539

[45] Y. Nir. 2015. ChaCha20, Poly1305, and Their Use in the Internet Key Exchange
Protocol (IKE) and IPsec. RFC 7634. RFC Editor. https://www.rfc-editor.org/rfc/
rfc7634.html

[46] Tomasz Osiński and Carmelo Cascone. 2021. Achieving End-to-End Network
Visibility with Host-INT. In Proceedings of the Symposium on Architectures for Net-
working and Communications Systems (ANCS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 140–143. https://doi.org/10.1145/3493425.3502764

21

https://curl.se/rfc/rfc3961.txt
https://curl.se/rfc/rfc3961.txt
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://github.com/pktgen/Pktgen-DPDK
https://github.com/pktgen/Pktgen-DPDK
https://www.netronome.com/media/documents/WP_Programming_with_P4_and_C.pdf
https://www.netronome.com/media/documents/WP_Programming_with_P4_and_C.pdf
https://docs.broadcom.com/doc/5880X-UG30X
https://docs.broadcom.com/doc/5880X-UG30X
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-liquidio-III-solutions-brief.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://grpc.io/docs/guides/auth
https://kb.vmware.com/s/article/2150348
https://kb.vmware.com/s/article/2150348
https://doi.org/10.1145/3469393.3469400
https://doi.org/10.1145/3405669.3405819
http://arxiv.org/abs/1909.11958
http://arxiv.org/abs/1909.11958
https://doi.org/10.1145/3476886.3477505
http://arxiv.org/abs/1901.08806
http://arxiv.org/abs/1901.08806
https://doi.org/10.1145/3472883.3486982
https://www.usenix.org/conference/cset19/presentation/kang
https://www.usenix.org/conference/cset19/presentation/kang
https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3143361.3143401
https://doi.org/10.1145/3411029.3411034
https://doi.org/10.1145/3341216.3342208
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
http://arxiv.org/abs/2112.12921
https://arxiv.org/abs/2112.12921
https://arxiv.org/abs/2112.12921
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3341302.3342079
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1016/j.dam.2016.02.020
https://doi.org/10.1109/NFV-SDN47374.2019.9040052
https://doi.org/10.1109/NFV-SDN47374.2019.9040052
https://doi.org/10.1109/APCCAS.2018.8605653
https://datatracker.ietf.org/doc/html/rfc7539
https://www.rfc-editor.org/rfc/rfc7634.html
https://www.rfc-editor.org/rfc/rfc7634.html
https://doi.org/10.1145/3493425.3502764


FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands Kottur et al.

[47] Tomasz Osiński. 2021. INT Host Reporter. https://github.com/
opennetworkinglab/int-host-reporter. (December 2021).

[48] Johannes Pfau, Maximilian Reuter, Tanja Harbaum, Klaus Hofmann, and Jür-
gen Becker. 2019. A Hardware Perspective on the ChaCha Ciphers: Scalable
Chacha8/12/20 Implementations Ranging from 476 Slices to Bitrates of 175 Gbit/s.
In 2019 32nd IEEE International System-on-Chip Conference (SOCC). 294–299.
https://doi.org/10.1109/SOCC46988.2019.1570548289

[49] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran Liss, Adam Morrison, and
Dan Tsafrir. 2021. Autonomous NIC Offloads. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2021). Association for Computing Machinery, New
York, NY, USA, 18–35. https://doi.org/10.1145/3445814.3446732

[50] Cloud Run Quotas and Limits. 2022. https://cloud.google.com/run/quotas. (May
2022).

[51] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. RFC Editor. https://www.rfc-editor.org/rfc/rfc8446.txt

[52] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS ’09). Association for Computing Machinery, New
York, NY, USA, 199–212. https://doi.org/10.1145/1653662.1653687

[53] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gallenmüller,
Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and Georg Carle. 2019.
Cryptographic Hashing in P4 Data Planes. In 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). 1–6. https:
//doi.org/10.1109/ANCS.2019.8901886

[54] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krishna-
murthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 740–755.
https://doi.org/10.1145/3477132.3483555

[55] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 753–768. https://doi.org/10.1145/3319535.3354252

[56] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulkarni. 2020.
TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile
Packet Core. In Proceedings of the Symposium on SDN Research (SOSR ’20).
Association for Computing Machinery, New York, NY, USA, 83–95. https:
//doi.org/10.1145/3373360.3380839

[57] Pablo B Viegas, Ariel G de Castro, Arthur F Lorenzon, Fábio D Rossi, and
Marcelo C Luizelli. 2021. The actual cost of programmable smartnics: Diving
into the existing limits. In International Conference on Advanced Information
Networking and Applications. Springer, 181–194.

[58] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford. 2020. Pro-
grammable In-Network Obfuscation of Traffic.

[59] Stuart Wray. 2014. The Joy of Micro-C. https://cdn.open-nfp.org/media/
documents/the-joy-of-micro-c_fcjSfra.pdf. (December 2014).

[60] Sophia Yoo and Xiaoqi Chen. 2021. Secure Keyed Hashing on Programmable
Switches. In Proceedings of the ACM SIGCOMM 2021 Workshop on Secure Pro-
grammable Network INfrastructure (SPIN ’21). Association for Computing Ma-
chinery, New York, NY, USA, 16–22. https://doi.org/10.1145/3472873.3472881

[61] Eder Ollora Zaballa, David Franco, Zifan Zhou, and Michael S. Berger. 2020.
P4Knocking: Offloading host-based firewall functionalities to the network. In
2020 23rd Conference on Innovation in Clouds, Internet and Networks andWorkshops
(ICIN). 7–12. https://doi.org/10.1109/ICIN48450.2020.9059298

A APPENDIX
We present additional details about the Netronome architecture,
on and off path SmartNIC designs and the packet format of an
incoming application message here.

A.1 Netronome architecture
In this work, we use the Netronome Agilio SoC smartNIC platform
that belongs to the NFP-4000 device family. NFP-based Agilio Smart-
NICs supports a User Datapath Programming Model that allows
users to program and customize the datapath on the SmartNIC. The
NFP-4000 processor includes 48 packet processing cores (PPCs) and
60 flow processing cores (FPCs). The FPCs are programmable blocks
that can run programs written in P4 and microC, while the PPCs
ensure basic functionality. Each FPC is an independent 32-bit core
at 800 MHz with 8 hardware threads, 32 KB instruction memory, 4
KB data memory, and CRC acceleration. The crypto accelerators
shown in the figure are not yet supported by the network cards we
have but there are different types of hash functions available on
the hash accelerator.

Function Accelerators

Hash Crypto Load balancer

Statistics QueueLook-up

CAM Bulk Atomic

Adaptive 
Memory

Controller

Internal Fabric Proximity Memory

Pre-Classifier

48 Processing Cores

Traffic ManagerPacket Modifier

60 Flow 
Processing Cores

I/O

PCIe Gen3

Arm11 cores

Figure 6: NFP-4000 Flow Processor Block Diagram

The NFP data path can be customized and programmed for cus-
tom packet/flow processing using P4 and C languages. In this paper,
we use the Netronome’s SDK that offers an environment support-
ive of both P4 and C software development. Along with code and
data store for the FPCs, the NFP-4000 includes four other kinds of
memory available to FPCs [5]: (i) 64 KB of Cluster Local Scratch
(CLS); (ii) 256 KB of Cluster Target Memory (CTM); (iii) Internal
Memory Unit (IMEM) that provides 4 MB of SRAM; and (iv) Exter-
nal Memory (EMEM) that has 2 GB of DRAM with a 3 MB SRAM
cache.

A.2 On and Off-path smartNICs
Multicore smartNICs can be characterized into On-path and Off-
path smartNICs based on the packet flow [19]. In on-path smart-
NICs, all traffic is handled by the NIC cores and tasks are executed
on the smartNIC by adding logic to the processing pipeline [38].
The NIC cores are able to invoke special hardware accelerators
for tasks such as crypto and compression [23]. In off-path smart-
NICs, the NIC’s cores are not directly on the data path from the
host to the network, but instead, there exists a NIC-switch con-
necting the network ports, the host cores and the NIC cores[54].
The NIC-switch is a specialized hardware unit with match-action

22

https://github.com/opennetworkinglab/int-host-reporter
https://github.com/opennetworkinglab/int-host-reporter
https://doi.org/10.1109/SOCC46988.2019.1570548289
https://doi.org/10.1145/3445814.3446732
https://cloud.google.com/run/quotas
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1109/ANCS.2019.8901886
https://doi.org/10.1109/ANCS.2019.8901886
https://doi.org/10.1145/3477132.3483555
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/3373360.3380839
https://doi.org/10.1145/3373360.3380839
https://cdn.open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf
https://cdn.open-nfp.org/media/documents/the-joy-of-micro-c_fcjSfra.pdf
https://doi.org/10.1145/3472873.3472881
https://doi.org/10.1109/ICIN48450.2020.9059298


Implementing ChaCha Based Crypto Primitives on Programmable SmartNICs FFSPIN ’22, August 22, 2022, Amsterdam, Netherlands

 Host Cores

NIC Cores

Traffic Manager

RX/TX ports

Traffic

 Host Cores

NIC Cores NIC Switch

RX/TX ports

Traffic

(a) On-path smartNIC    (b) Off-path smartNIC

Figure 7: SmartNIC designs.

Ethernet IP primitive
header L4 Payload secure

hash

 Type Proto Padding Nonce

14B 20B 15B 32b

8b 8b 8b 96b

AUTH_set? AUTH_test? ENC? DEC?

1b 1b 1b 1b

Reserved for
future use

4b

Figure 8: Format of an application message.

engines and runtime-configurable rules for routing packets [23].
Marvell LiquidIO [7] and Netronome NICs[3] are on-path smart-
NICs while Mellanox BlueField[8] and Broadcom Stingray [6] are
off-path smartNICs. On-path smartNICs have the advantage that
the NIC cores have direct access to packet memory thus resulting
in low latency packet processing while the NIC switch in off-path
smartNICs allows packets to skip NIC cores and directly access
host cores. Figure 7 shows the two smartNIC modes.

A.3 Packet format
Fig. 8 shows the format of an incoming message that wants to
leverage crypto primitives for message protection. The sending
application appends the primitive header after the transport (layer 4)
header. The primitive header contains information about the crypto
operations requested by the application and the corresponding
parameter values.

Type. The first byte of the primitive header contains information
about the requested crypto operations. The first four bits are the
flags and the rest four bits are reserved for future use. The first bit,
AUTH_set, indicates if secure hash should be computed and ap-
pended for packet data authentication. The second bit, AUTH_test,
indicates if an authentication check is required. If authentication is
unsuccessful, the packet is dropped. The third bit, ENC, indicates if
the payload needs to be encrypted. The fourth bit, DEC, indicates
if the payload needs to be decrypted.

Secure hash. If AUTH_test is set in the Type byte, the incoming
packet already has the 32-bit secure hash that was appended by
another smartNIC (end-point).

Proto.To indicate the presence of the primitive header, we set the
protocol field of the IP header to the special value "145" (unassigned
port number [11]). The protocol field value of the IP header is
copied to the 8-bit proto field of the primitive header so that the
original protocol value can be copied back to the IP header when
the primitive header is decapsulated.

Padding. Our ChaCha implementation generates the keystream
of 64 bytes. To align the IP payload to 64 bytes, some padding bytes
are used. The count of padded bytes is specified in the 8-bit padding
field of the primitive header.

Nonce. The ChaCha algorithm uses a 96-bit nonce. The nonce
is one of the inputs to generate the keystream for encryption and
decryption. The nonce value used during encryption is appended
in the nonce field since the same nonce value should be used for
decryption.

23


	Abstract
	1 Introduction
	2 Background & Motivation
	3 Design & Implementation
	3.1 Design choices
	3.2 The ChaCha algorithm
	3.3 Realizing ChaCha crypto algorithms

	4 Evaluation
	5 Related Work
	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Netronome architecture
	A.2 On and Off-path smartNICs
	A.3 Packet format


