482 research outputs found

    A novel approach for multispectral satellite image classification based on the bat algorithm

    Get PDF
    Amongst the multiple advantages and applications of remote sensing, one of the most important use is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this work, we propose a novel Bat Algorithm (BA) based clustering approach for solving crop type classification problems using a multi-spectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multi-spectral satellite image and one benchmark dataset from the UCI repository are used to demonstrate robustness of the proposed algorithm. The performance of the Bat Algorithm is compared with the traditional K-means and two other nature-inspired metaheuristic techniques, namely, Genetic Algorithm and Particle Swarm Optimization. From the results obtained, we can conclude that BA can be successfully applied to solve crop type classification problems

    A novel approach for multispectral satellite image classification based on the bat algorithm

    Get PDF
    Amongst the multiple advantages and applications of remote sensing, one of the most important use is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this work, we propose a novel Bat Algorithm (BA) based clustering approach for solving crop type classification problems using a multi-spectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multi-spectral satellite image and one benchmark dataset from the UCI repository are used to demonstrate robustness of the proposed algorithm. The performance of the Bat Algorithm is compared with the traditional K-means and two other nature-inspired metaheuristic techniques, namely, Genetic Algorithm and Particle Swarm Optimization. From the results obtained, we can conclude that BA can be successfully applied to solve crop type classification problems

    A Short Survey on Data Clustering Algorithms

    Full text link
    With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end

    A review of clustering techniques and developments

    Full text link
    © 2017 Elsevier B.V. This paper presents a comprehensive study on clustering: exiting methods and developments made at various times. Clustering is defined as an unsupervised learning where the objects are grouped on the basis of some similarity inherent among them. There are different methods for clustering the objects such as hierarchical, partitional, grid, density based and model based. The approaches used in these methods are discussed with their respective states of art and applicability. The measures of similarity as well as the evaluation criteria, which are the central components of clustering, are also presented in the paper. The applications of clustering in some fields like image segmentation, object and character recognition and data mining are highlighted

    Integration Of Unsupervised Clustering Algorithm And Supervised Classifier For Pattern Recognition

    Get PDF
    In a real world, pattern recognition problems in diversified forms are ubiquitous and are critical in most human decision making tasks. In pattern recognition system, achieving high accuracy in pattern classification is crucial. There are two general paradigms for pattern recognition classification which are supervised and unsupervised learning. The problems in applying unsupervised learning/clustering is that this method requires teacher during the classification process and it has to learn independently which may lead to poor classification. Whereas for supervised learning method, it requires teacher or prior data (i.e. large, prohibitive and labelled training data) during classification process which in real life, the cost of obtaining sufficient labelled training data is high. In addition, the labelling is time consuming and done manually. To solve the problems mentioned, integration of unsupervised clustering algorithm and the supervised classifier is proposed. The objective of this research is to study the performance/capability of the integration between both unsupervised and supervised learning. In order to achieve the objective, this research is separated into two phases. Phase 1 is mainly to evaluate the performance of clustering algorithm (K-Means and FCM). Phase 2 is to study the performance of proposed integration system which using the data clustered to be used as train data for Naïve Bayes classifier. By adopting the proposed integration system, the limitation of the unsupervised clustering method can be overcome and for supervised learning, the labelling time can be reduced and more training examples are labelled which can be used to train for supervised classifier. As the result, the pattern classification accuracy is also xii increase. For examples, after applying the proposed integration system, the classification accuracy of Fisher’s Iris, Wine and Bacteria18Class has been increased from 88.67% to 96.00%, from 78.33% to 83.45% and from 93.33% to 94.67% respectively as compared to only used unsupervised clustering algorithm. The result has shown that the proposed integration system could be applied to increase the performance of the classification. However, further study is needed in the feature extraction and clustering algorithms part as the performance of the pattern classification is still depending on the data input

    ClusterFormer: Clustering As A Universal Visual Learner

    Full text link
    This paper presents CLUSTERFORMER, a universal vision model that is based on the CLUSTERing paradigm with TransFORMER. It comprises two novel designs: 1. recurrent cross-attention clustering, which reformulates the cross-attention mechanism in Transformer and enables recursive updates of cluster centers to facilitate strong representation learning; and 2. feature dispatching, which uses the updated cluster centers to redistribute image features through similarity-based metrics, resulting in a transparent pipeline. This elegant design streamlines an explainable and transferable workflow, capable of tackling heterogeneous vision tasks (i.e., image classification, object detection, and image segmentation) with varying levels of clustering granularity (i.e., image-, box-, and pixel-level). Empirical results demonstrate that CLUSTERFORMER outperforms various well-known specialized architectures, achieving 83.41% top-1 acc. over ImageNet-1K for image classification, 54.2% and 47.0% mAP over MS COCO for object detection and instance segmentation, 52.4% mIoU over ADE20K for semantic segmentation, and 55.8% PQ over COCO Panoptic for panoptic segmentation. For its efficacy, we hope our work can catalyze a paradigm shift in universal models in computer vision
    corecore