49 research outputs found

    Supermodularity in Unweighted Graph Optimization I: Branchings and Matchings

    Get PDF
    The main result of this paper is motivated by the following two apparently unrelated graph optimization problems: (A) As an extension of Edmonds' disjoint branchings theorem, characterize digraphs comprising k disjoint branchings B-i each having a specified number mu(i) of arcs. (B) As an extension of Ryser's maximum term rank formula, determine the largest possible matching number of simple bipartite graphs complying with degree-constraints. The solutions to these problems and to their generalizations will be obtained from a new min-max theorem on covering a supermodular function by a simple degree-constrained bipartite graph. A specific feature of the result is that its minimum cost extension is already NP-hard. Therefore classic polyhedral tools themselves definitely cannot be sufficient for solving the problem, even though they make some good service in our approach

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Orientations des graphes (structures et algorithmes)

    Get PDF
    Orienter un graphe c'est remplacer chaque arête par un arc de mêmes extrémités. On s'intéresse à la connexité du graphe orienté ainsi obtenu. L'orientation avec des contraintes d'arc-connexité est maintenant comprise en profondeur mais très peu de résultats sont connus en terme de sommet-connexité. La conjecture de Thomassen avance que les graphes suffisament sommet-connexes ont une orientation k-sommet-connexe. De plus, la conjecture de Frank propose une caractérisation des graphes qui admettent une telle orientation. Les résultats de cette thèse s'articulent autour des notions d'orientation, de packing, de connexité et de matroïde. D'abord, nous infirmons une conjecture de Recski sur la décomposition d'un graphe en arbres ayant des orientations avec degrés entrants prescrits. Nous prouvons également un nouveau résultat sur le packing d'arborescences enracinées avec contraintes de matroïdes. Ceci généralise un résultat fondamental d'Edmonds. Enfin, nous démontrons un nouveau théorème de packing sur les bases des matroïdes de dénombrement qui nous permet d'améliorez le seul résultat connu sur la conjecture de Thomassen. D'autre part, nous donnons une construction et un théorème d'augmentation pour une famille de graphes liée à la conjecture de Frank. En conclusion, nous réfutons la conjecture de Frank et prouvons que, pour tout entier k >= 3, décider si un graphe a une orientation k-sommet-connexe est un problème NP-complet.Orienting an undirected graph means replacing each edge by an arc with the same ends. We investigate the connectivity of the resulting directed graph. Orientations with arc-connectivity constraints are now deeply understood but very few results are known in terms of vertex-connectivity. Thomassen conjectured that sufficiently highly vertex-connected graphs have a k-vertex- connected orientation while Frank conjectured a characterization of the graphs admitting such an orientation. The results of this thesis are structures around the concepts of orientation, packing, connectivity and matroid. First, we disprove a conjecture of Recski on decomposing a graph into trees having orientations with specified indegrees. We also prove a new result on packing rooted arborescences with matroid constraints. This generalizes a fundamental result of Edmonds. Moreover, we show a new packing theorem for the bases of count matroids that induces an improvement of the only known result on Thomassen's conjecture. Secondly, we give a construction and an augmentation theorem for a family of graphs related to Frank's conjecture. To conclude, we disprove the conjecture of Frank and prove that, for every integer k >= 3, the problem of deciding whether a graph admits a k-vertex-orientation is NP-complete.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Iterative Rounding Approximation Algorithms in Network Design

    Get PDF
    Iterative rounding has been an increasingly popular approach to solving network design optimization problems ever since Jain introduced the concept in his revolutionary 2-approximation for the Survivable Network Design Problem (SNDP). This paper looks at several important iterative rounding approximation algorithms and makes improvements to some of their proofs. We generalize a matrix restatement of Nagarajan et al.'s token argument, which we can use to simplify the proofs of Jain's 2-approximation for SNDP and Fleischer et al.'s 2-approximation for the Element Connectivity (ELC) problem. Lau et al. show how one can construct a (2,2B + 3)-approximation for the degree bounded ELC problem, and this thesis provides the proof. We provide some structural results for basic feasible solutions of the Prize-Collecting Steiner Tree problem, and introduce a new problem that arises, which we call the Prize-Collecting Generalized Steiner Tree problem

    Multiwinner Elections with Diversity Constraints

    Full text link
    We develop a model of multiwinner elections that combines performance-based measures of the quality of the committee (such as, e.g., Borda scores of the committee members) with diversity constraints. Specifically, we assume that the candidates have certain attributes (such as being a male or a female, being junior or senior, etc.) and the goal is to elect a committee that, on the one hand, has as high a score regarding a given performance measure, but that, on the other hand, meets certain requirements (e.g., of the form "at least 30%30\% of the committee members are junior candidates and at least 40%40\% are females"). We analyze the computational complexity of computing winning committees in this model, obtaining polynomial-time algorithms (exact and approximate) and NP-hardness results. We focus on several natural classes of voting rules and diversity constraints.Comment: A short version of this paper appears in the proceedings of AAAI-1
    corecore