33,603 research outputs found
Analysis of micro characteristics and influence factors of foundation pit failure
Combined with the design data of an actual foundation pit, PFC (Particle Flow Code) model was developed and micro characteristics such as porosity, displacement vector field and particle rotation were analyzed when a foundation pit with cantilever soldier pile was unstable. The effect of overload, embedded pile depth and the angle of internal friction of soil on instability of the foundation pit were further analyzed. The results indicate that the displacement field under different overload is distinctly different. When piles are shallowly embedded, the foundation pit is apt to be overall unstable and a triangular shaped area of intense shearing and considerable particle rotation appears to form. The soil mass outside the pit compresses at the beginning and subsequently dilates during the failure of the pit. It is shown that factors such as ground overload and the angle of internal friction of soil greatly affect the overturning stability and the slip failure of the foundation pit
Forecasting Recharging Demand to Integrate Electric Vehicle Fleets in Smart Grids
Electric vehicle fleets and smart grids are two growing technologies. These technologies
provided new possibilities to reduce pollution and increase energy efficiency.
In this sense, electric vehicles are used as mobile loads in the power grid. A distributed
charging prioritization methodology is proposed in this paper. The solution is based
on the concept of virtual power plants and the usage of evolutionary computation
algorithms. Additionally, the comparison of several evolutionary algorithms, genetic
algorithm, genetic algorithm with evolution control, particle swarm optimization, and
hybrid solution are shown in order to evaluate the proposed architecture. The proposed
solution is presented to prevent the overload of the power grid
A comparison of the results from intra-pleural and intra-peritoneal studies with those from inhalation and intratracheal tests for the assessment of pulmonary responses to inhalable dusts and fibres.
The aim of this paper is to compare results from inhalation studies with those from intraperitoneal and intrapleural tests, where available, for a number of fibrous and particulate test materials. The objective is to determine how well intraperitoneal/intrapleural studies predict the pathological responses observed in more standard in vivo studies of pulmonary toxicity, with a particular focus on carcinogenicity. Published toxicity data was obtained for a number of materials including asbestos, wollastonite, MMVFs (including glass fibres, stone wools and RCF), silicon carbide whiskers, potassium octatitanate, quartz, kevlar, polypropylene and titanium dioxide. For some of the fibrous material reviewed, there is conformity between the results of intraperitoneal and inhalation tests such that they are either consistently positive or consistently negative. For the remaining fibrous materials reviewed, intraperitoneal and inhalation tests give different results, with positive results in the intraperitoneal test not being reflected by positive inhalation results. It is suggested that the intraperitoneal test can be used to exonerate a dust or fibre (because if negative in the intraperitoneal test it is extremely unlikely to be positive in either inhalation or intratracheal tests) but should not be used to positively determine that a dust or fibre is carcinogenic by inhalation. We would argue against the use of intraperitoneal tests for human health risk assessment except perhaps for the purpose of exoneration of a material from classification as a carcinogen.Peer reviewedFinal Accepted Versio
ALSEP termination report
The Apollo Lunar Surface Experiments Package (ALSEP) final report was prepared when support operations were terminated September 30, 1977, and NASA discontinued the receiving and processing of scientific data transmitted from equipment deployed on the lunar surface. The ALSEP experiments (Apollo 11 to Apollo 17) are described and pertinent operational history is given for each experiment. The ALSEP data processing and distribution are described together with an extensive discussion on archiving. Engineering closeout tests and results are given, and the status and configuration of the experiments at termination are documented. Significant science findings are summarized by selected investigators. Significant operational data and recommendations are also included
Interactive Tutorials For Upper Level Quantum Mechanics Courses
This thesis explores the ongoing need for interactive tutorials in the upper level undergraduate Quantum Mechanics course. It first summarizes the development and evaluation of tutorials at the introductory physics level by others, and then challenges the belief that upper level students do not need this type of intervention by citing research in student difficulties in learning Quantum Mechanics. Physics Education research shows that there are common student misconceptions that persist even in the upper level undergraduate courses such as Quantum Mechanics. Cognitive research serves as a guide for effective curriculum design. A description of the iterative process for developing and evaluating the tutorials is discussed. The development and evaluation of "The Time Evolution of a Wave Function" Quantum Interactive Learning Tutorial (QuILT) is described in detail. Finally, the success of the QuILT in reducing the common misconceptions about time evolution is discussed
Sensitivity of the stress response function to packing preparation
A granular assembly composed of a collection of identical grains may pack
under different microscopic configurations with microscopic features that are
sensitive to the preparation history. A given configuration may also change in
response to external actions such as compression, shearing etc. We show using a
mechanical response function method developed experimentally and numerically,
that the macroscopic stress profiles are strongly dependent on these
preparation procedures. These results were obtained for both two and three
dimensions. The method reveals that, under a given preparation history, the
macroscopic symmetries of the granular material is affected and in most cases
significant departures from isotropy should be observed. This suggests a new
path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J.
Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor
Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context
Battery management systems may rely on mathematical models to provide higher
performance than standard charging protocols. Electrochemical models allow us
to capture the phenomena occurring inside a lithium-ion cell and therefore,
could be the best model choice. However, to be of practical value, they require
reliable model parameters. Uncertainty quantification and optimal experimental
design concepts are essential tools for identifying systems and estimating
parameters precisely. Approximation errors in uncertainty quantification result
in sub-optimal experimental designs and consequently, less-informative data,
and higher parameter unreliability. In this work, we propose a highly efficient
design of experiment method based on global parameter sensitivities. This novel
concept is applied to the single-particle model with electrolyte and thermal
dynamics (SPMeT), a well-known electrochemical model for lithium-ion cells. The
proposed method avoids the simplifying assumption of output-parameter
linearization (i.e., local parameter sensitivities) used in conventional Fisher
information matrix-based experimental design strategies. Thus, the optimized
current input profile results in experimental data of higher information
content and in turn, in more precise parameter estimates.Comment: Accepted for 21st IFAC World Congres
Collaborative yet independent: Information practices in the physical sciences
In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data.
This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research.
Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network (RIN), each looking at information practices in a specific domain (life sciences, humanities, and physical sciences). The aim is to understand how researchers within a range of disciplines find and use information, and in particular how that has changed with the introduction of new technologies
- …
