492 research outputs found

    Particle Swarm Optimization Algorithm to Solve Vehicle Routing Problem with Fuel Consumption Minimization

    Get PDF
    The Conventional Vehicle Routing Problem (VRP) has the objective function of minimizing the total vehicles’ traveling distance. Since the fuel cost is a relatively high component of transportation costs, in this study, the objective function of VRP has been extended by considering fuel consumption minimization in the situation wherein the loading weight and traveling time are restricted. Based on these assumptions, we proposed to extend the route division procedure proposed by Kuo and Wang [4] such that when one of the restrictions can not be met the routing division continues to create a new sub-route to find an acceptable solution. To solve the formulated problem, the Particle Swarm Optimization (PSO) algorithm is proposed to optimize the vehicle routing plan. The proposed methodology is validated by solving the problem by taking a particular day data from a bottled drinking water distribution company. It was revealed that the saving of at best 13% can be obtained from the actual routes applied by the company

    An estimation of distribution algorithm for combinatorial optimization problems

    Get PDF
    This paper considers solving more than one combinatorial problem considered some of the most difficult to solve in the combinatorial optimization field, such as the job shop scheduling problem (JSSP), the vehicle routing problem with time windows (VRPTW), and the quay crane scheduling problem (QCSP). A hybrid metaheuristic algorithm that integrates the Mallows model and the Moth-flame algorithm solves these problems. Through an exponential function, the Mallows model emulates the solution space distribution for the problems; meanwhile, the Moth-flame algorithm is in charge of determining how to produce the offspring by a geometric function that helps identify the new solutions. The proposed metaheuristic, called HEDAMMF (Hybrid Estimation of Distribution Algorithm with Mallows model and Moth-Flame algorithm), improves the performance of recent algorithms. Although knowing the algebra of permutations is required to understand the proposed metaheuristic, utilizing the HEDAMMF is justified because certain problems are fixed differently under different circumstances. These problems do not share the same objective function (fitness) and/or the same constraints. Therefore, it is not possible to use a single model problem. The aforementioned approach is able to outperform recent algorithms under different metrics for these three combinatorial problems. Finally, it is possible to conclude that the hybrid metaheuristics have a better performance, or equal in effectiveness than recent algorithms

    A hybrid multi-start metaheuristic scheduler for astronomical observations

    Get PDF
    In this paper, we investigate Astronomical Observations Scheduling which is a type of Multi-Objective Combinatorial Optimization Problem, and detail its specific challenges and requirements and propose the Hybrid Accumulative Planner (HAP), a hybrid multi-start metaheuristic scheduler able to adapt to the different variations and demands of the problem. To illustrate the capabilities of the proposal in a real-world scenario, HAP is tested on the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel) mission of the European Space Agency (ESA), and compared with other studies on this subject including an Evolutionary Algorithm (EA) approach. The results show that the proposal outperforms the other methods in the evaluation and achieves better scientific goals than its peers. The consistency of HAP in obtaining better results on the available datasets for Ariel, with various sizes and constraints, demonstrates its competence in scalability and adaptability to different conditions of the problem.Peer ReviewedPostprint (published version

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Solid Waste Collection Optimization: A literature Review

    Get PDF
    The urban population saw an increase of 80 million in 2019. The accelerated movement of people towards urban centres along with annual increasing per capita waste generation calls for an urgent need to address the rising solid waste generation. Contemporary pandemic of Covid-19 puts the demand all time high for revival and optimizing solid waste management system. For optimizing solid waste management, solid waste collection is the most important aspect of process as it includes majority of financial inputs. This article aims to provide literature review regarding different methodologies and criteria for solid waste collection optimization. The article also examines trends and areas of future research along with unexplored and budding domains. This would help reader identifying his interest area besides getting a comprehensive understanding of research trends. The study could also be used by waste management firms to analyze, compare different methods, their performance and their suitability under different environment conditions.

    Multi-Objective Mission Route Planning Using Particle Swarm Optimization

    Get PDF
    The Mission Routing Problem (MRP) is the selection of a vehicle path starting at a point, going through enemy terrain defended by radar sites to get to the target(s) and returning to a safe destination (usually the starting point). The MRP is a three-dimensional, multi-objective path search with constraints such as fuel expenditure, time limits, multi-targets, and radar sites with different levels of risks. It can severely task all the resources (people, hardware, software) of the system trying to compute the possible routes. The nature of the problem can cause operational planning systems to take longer to generate a solution than the time available. Since time is critical in MRP, it is important that a solution is reached within a relatively short time. It is not worth generating the solution if it takes days to calculate since the information may become invalid during that time. Particle Swarm Optimization (PSO) is an Evolutionary Algorithm (EA) technique that tries to find optimal solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been shown to provide good solutions to Traveling Salesman Problem (TSP). PSO_AS is a synthesis of PSO and Ant System (AS). PSO_AS is a new approach for solving the MRP, and it produces good solutions. This thesis presents a new algorithm (PSO_AS) that functions to find the optimal solution by exploring the MRP search space stochastically
    • …
    corecore