162 research outputs found

    Fuzzy adaptive resonance theory: Applications and extensions

    Get PDF
    Adaptive Resonance Theory, ART, is a powerful clustering tool for learning arbitrary patterns in a self-organizing manner. In this research, two papers are presented that examine the extensibility and applications of ART. The first paper examines a means to boost ART performance by assigning each cluster a vigilance value, instead of a single value for the whole ART module. A Particle Swarm Optimization technique is used to search for desirable vigilance values. In the second paper, it is shown how ART, and clustering in general, can be a useful tool in preprocessing time series data. Clustering quantization attempts to meaningfully group data for preprocessing purposes, and improves results over the absence of quantization with statistical significance. --Abstract, page iv

    Performance Evaluation of Different Optimization Algorithms for Power Demand Forecasting Applications in a Smart Grid Environment

    Get PDF
    AbstractThis paper presents an in-depth performance evaluation of three different optimization algorithms, in particular genetic algorithm (GA), particle swarm optimization (PSO), and firefly (FF) algorithm for power demand forecasting in a deregulated electricity market and smart grid environments. In this framework, this paper proposes a hybrid intelligent algorithm for power demand forecasts using the combination of wavelet transform (WT) and fuzzy ARTMAP (FA) network that is optimized by using FF optimization algorithm. The effectiveness and accuracy of the proposed hybrid WT+FF+FA model is trained and tested utilizing the data obtained from ISO-NE electricity market

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Adapting heterogeneous ensembles with particle swarm optimization for video face recognition

    Get PDF
    In video-based face recognition applications, matching is typically performed by comparing query samples against biometric models (i.e., an individual’s facial model) that is designed with reference samples captured during an enrollment process. Although statistical and neural pattern classifiers may represent a flexible solution to this kind of problem, their performance depends heavily on the availability of representative reference data. With operators involved in the data acquisition process, collection and analysis of reference data is often expensive and time consuming. However, although a limited amount of data is initially available during enrollment, new reference data may be acquired and labeled by an operator over time. Still, due to a limited control over changing operational conditions and personal physiology, classification systems used for video-based face recognition are confronted to complex and changing pattern recognition environments. This thesis concerns adaptive multiclassifier systems (AMCSs) for incremental learning of new data during enrollment and update of biometric models. To avoid knowledge (facial models) corruption over time, the proposed AMCS uses a supervised incremental learning strategy based on dynamic particle swarm optimization (DPSO) to evolve a swarm of fuzzy ARTMAP (FAM) neural networks in response to new data. As each particle in a FAM hyperparameter search space corresponds to a FAM network, the learning strategy adapts learning dynamics by co-optimizing all their parameters – hyperparameters, weights, and architecture – in order to maximize accuracy, while minimizing computational cost and memory resources. To achieve this, the relationship between the classification and optimization environments is studied and characterized, leading to these additional contributions. An initial version of this DPSO-based incremental learning strategy was applied to an adaptive classification system (ACS), where the accuracy of a single FAM neural network is maximized. It is shown that the original definition of a classification system capable of supervised incremental learning must be reconsidered in two ways. Not only must a classifier’s learning dynamics be adapted to maintain a high level of performance through time, but some previously acquired learning validation data must also be used during adaptation. It is empirically shown that adapting a FAM during incremental learning constitutes a type III dynamic optimization problem in the search space, where the local optima values and their corresponding position change in time. Results also illustrate the necessity of a long term memory (LTM) to store previously acquired data for unbiased validation and performance estimation. The DPSO-based incremental learning strategy was then modified to evolve the swarm (or pool) of FAM networks within an AMCS. A key element for the success of ensembles is tackled: classifier diversity. With several correlation and diversity indicators, it is shown that genoVIII type (i.e., hyperparameters) diversity in the optimization environment is correlated with classifier diversity in the classification environment. Following this result, properties of a DPSO algorithm that seeks to maintain genotype particle diversity to detect and follow local optima are exploited to generate and evolve diversified pools of FAMclassifiers. Furthermore, a greedy search algorithm is presented to perform an efficient ensemble selection based on accuracy and genotype diversity. This search algorithm allows for diversified ensembles without evaluating costly classifier diversity indicators, and selected ensembles also yield accuracy comparable to that of reference ensemble-based and batch learning techniques, with only a fraction of the resources. Finally, after studying the relationship between the classification environment and the search space, the objective space of the optimization environment is also considered. An aggregated dynamical niching particle swarm optimization (ADNPSO) algorithm is presented to guide the FAM networks according two objectives: FAM accuracy and computational cost. Instead of purely solving a multi-objective optimization problem to provide a Pareto-optimal front, the ADNPSO algorithm aims to generate pools of classifiers among which both genotype and phenotype (i.e., objectives) diversity are maximized. ADNPSO thus uses information in the search spaces to guide particles towards different local Pareto-optimal fronts in the objective space. A specialized archive is then used to categorize solutions according to FAMnetwork size and then capture locally non-dominated classifiers. These two components are then integrated to the AMCS through an ADNPSO-based incremental learning strategy. The AMCSs proposed in this thesis are promising since they create ensembles of classifiers designed with the ADNPSO-based incremental learning strategy and provide a high level of accuracy that is statistically comparable to that obtained through mono-objective optimization and reference batch learning techniques, and yet requires a fraction of the computational cost

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Automatic classification of power quality disturbances using optimal feature selection based algorithm

    Get PDF
    The development of renewable energy sources and power electronic converters in conventional power systems leads to Power Quality (PQ) disturbances. This research aims at automatic detection and classification of single and multiple PQ disturbances using a novel optimal feature selection based on Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN). DWT is used for the extraction of useful features, which are used to distinguish among different PQ disturbances by an ANN classifier. The performance of the classifier solely depends on the feature vector used for the training. Therefore, this research is required for the constructive feature selection based classification system. In this study, an Artificial Bee Colony based Probabilistic Neural Network (ABCPNN) algorithm has been proposed for optimal feature selection. The most common types of single PQ disturbances include sag, swell, interruption, harmonics, oscillatory and impulsive transients, flicker, notch and spikes. Moreover, multiple disturbances consisting of combination of two disturbances are also considered. The DWT with multi-resolution analysis has been applied to decompose the PQ disturbance waveforms into detail and approximation coefficients at level eight using Daubechies wavelet family. Various types of statistical parameters of all the detail and approximation coefficients have been analysed for feature extraction, out of which the optimal features have been selected using ABC algorithm. The performance of the proposed algorithm has been analysed with different architectures of ANN such as multilayer perceptron and radial basis function neural network. The PNN has been found to be the most suitable classifier. The proposed algorithm is tested for both PQ disturbances obtained from the parametric equations and typical power distribution system models using MATLAB/Simulink and PSCAD/EMTDC. The PQ disturbances with uniformly distributed noise ranging from 20 to 50 dB have also been analysed. The experimental results show that the proposed ABC-PNN based approach is capable of efficiently eliminating unnecessary features to improve the accuracy and performance of the classifier

    Adaptive classifier ensembles for face recognition in video-surveillance

    Get PDF
    Lors de l’implémentation de systèmes de sécurité tels que la vidéo-surveillance intelligente, l’utilisation d’images de visages présente de nombreux avantages par rapport à d’autres traits biométriques. En particulier, cela permet de détecter d’éventuels individus d’intérêt de manière discrète et non intrusive, ce qui peut être particulièrement avantageux dans des situations comme la détection d’individus sur liste noire, la recherche dans des données archivées ou la ré-identification de visages. Malgré cela, la reconnaissance de visages reste confrontée à de nombreuses difficultés propres à la vidéo surveillance. Entre autres, le manque de contrôle sur l’environnement observé implique de nombreuses variations dans les conditions d’éclairage, la résolution de l’image, le flou de mouvement, l’orientation et l’expression des visages. Pour reconnaître des individus, des modèles de visages sont habituellement générés à l’aide d’un nombre limité d’images ou de vidéos de référence collectées lors de sessions d’inscription. Cependant, ces acquisitions ne se déroulant pas nécessairement dans les mêmes conditions d’observation, les données de référence représentent pas toujours la complexité du problème réel. D’autre part, bien qu’il soit possible d’adapter les modèles de visage lorsque de nouvelles données de référence deviennent disponibles, un apprentissage incrémental basé sur des données significativement différentes expose le système à un risque de corruption de connaissances. Enfin, seule une partie de ces connaissances est effectivement pertinente pour la classification d’une image donnée. Dans cette thèse, un nouveau système est proposé pour la détection automatique d’individus d’intérêt en vidéo-surveillance. Plus particulièrement, celle-ci se concentre sur un scénario centré sur l’utilisateur, où un système de reconnaissance de visages est intégré à un outil d’aide à la décision pour alerter un opérateur lorsqu’un individu d’intérêt est détecté sur des flux vidéo. Un tel système se doit d’être capable d’ajouter ou supprimer des individus d’intérêt durant son fonctionnement, ainsi que de mettre à jour leurs modèles de visage dans le temps avec des nouvelles données de référence. Pour cela, le système proposé se base sur de la détection de changement de concepts pour guider une stratégie d’apprentissage impliquant des ensembles de classificateurs. Chaque individu inscrit dans le système est représenté par un ensemble de classificateurs à deux classes, chacun étant spécialisé dans des conditions d’observation différentes, détectées dans les données de référence. De plus, une nouvelle règle pour la fusion dynamique d’ensembles de classificateurs est proposée, utilisant des modèles de concepts pour estimer la pertinence des classificateurs vis-à-vis de chaque image à classifier. Enfin, les visages sont suivis d’une image à l’autre dans le but de les regrouper en trajectoires, et accumuler les décisions dans le temps. Au Chapitre 2, la détection de changement de concept est dans un premier temps utilisée pour limiter l’augmentation de complexité d’un système d’appariement de modèles adoptant une stratégie de mise à jour automatique de ses galeries. Une nouvelle approche sensible au contexte est proposée, dans laquelle seules les images de haute confiance capturées dans des conditions d’observation différentes sont utilisées pour mettre à jour les modèles de visage. Des expérimentations ont été conduites avec trois bases de données de visages publiques. Un système d’appariement de modèles standard a été utilisé, combiné avec un module de détection de changement dans les conditions d’illumination. Les résultats montrent que l’approche proposée permet de diminuer la complexité de ces systèmes, tout en maintenant la performance dans le temps. Au Chapitre 3, un nouveau système adaptatif basé des ensembles de classificateurs est proposé pour la reconnaissance de visages en vidéo-surveillance. Il est composé d’un ensemble de classificateurs incrémentaux pour chaque individu inscrit, et se base sur la détection de changement de concepts pour affiner les modèles de visage lorsque de nouvelles données sont disponibles. Une stratégie hybride est proposée, dans laquelle des classificateurs ne sont ajoutés aux ensembles que lorsqu’un changement abrupt est détecté dans les données de référence. Lors d’un changement graduel, les classificateurs associés sont mis à jour, ce qui permet d’affiner les connaissances propres au concept correspondant. Une implémentation particulière de ce système est proposée, utilisant des ensembles de classificateurs de type Fuzzy-ARTMAP probabilistes, générés et mis à jour à l’aide d’une stratégie basée sur une optimisation par essaims de particules dynamiques, et utilisant la distance de Hellinger entre histogrammes pour détecter des changements. Les simulations réalisées sur la base de donnée de vidéo-surveillance Faces in Action (FIA) montrent que le système proposé permet de maintenir un haut niveau de performance dans le temps, tout en limitant la corruption de connaissance. Il montre des performances de classification supérieure à un système similaire passif (sans détection de changement), ainsi qu’a des systèmes de référence de type kNN probabiliste, et TCM-kNN. Au Chapitre 4, une évolution du système présenté au Chapitre 3 est proposée, intégrant des mécanismes permettant d’adapter dynamiquement le comportement du système aux conditions d’observation changeantes en mode opérationnel. Une nouvelle règle de fusion basée sur de la pondération dynamique est proposée, assignant à chaque classificateur un poids proportionnel à son niveau de compétence estimé vis-à-vis de chaque image à classifier. De plus, ces compétences sont estimées à l’aide des modèles de concepts utilisés en apprentissage pour la détection de changement, ce qui permet un allègement des ressources nécessaires en mode opérationnel. Une évolution de l’implémentation proposée au Chapitre 3 est présentée, dans laquelle les concepts sont modélisés à l’aide de l’algorithme de partitionnement Fuzzy C-Means, et la fusion de classificateurs réalisée avec une moyenne pondérée. Les simulation expérimentales avec les bases de données de vidéo-surveillance FIA et Chokepoint montrent que la méthode de fusion proposée permet d’obtenir des résultats supérieurs à la méthode de sélection dynamique DSOLA, tout en utilisant considérablement moins de ressources de calcul. De plus, la méthode proposée montre des performances de classification supérieures aux systèmes de référence de type kNN probabiliste, TCM-kNN et Adaptive Sparse Coding

    Artificial Intelligence-based Control Techniques for HVDC Systems

    Get PDF
    The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems. Doi: 10.28991/ESJ-2023-07-02-024 Full Text: PD
    • …
    corecore