4,576 research outputs found

    Triggered memory-based swarm optimization in dynamic environments

    Get PDF
    This is a post-print version of this article - Copyright @ 2007 Springer-VerlagIn recent years, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are time-varying. In this paper, a triggered memory scheme is introduced into the particle swarm optimization to deal with dynamic environments. The triggered memory scheme enhances traditional memory scheme with a triggered memory generator. Experimental study over a benchmark dynamic problem shows that the triggered memory-based particle swarm optimization algorithm has stronger robustness and adaptability than traditional particle swarm optimization algorithms, both with and without traditional memory scheme, for dynamic optimization problems

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Biogeography-based learning particle swarm optimization

    Get PDF

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Multi-population methods with adaptive mutation for multi-modal optimization problems

    Get PDF
    open access journalThis paper presents an efficient scheme to locate multiple peaks on multi-modal optimization problems by using genetic algorithms (GAs). The premature convergence problem shows due to the loss of diversity, the multi-population technique can be applied to maintain the diversity in the population and the convergence capacity of GAs. The proposed scheme is the combination of multi-population with adaptive mutation operator, which determines two different mutation probabilities for different sites of the solutions. The probabilities are updated by the fitness and distribution of solutions in the search space during the evolution process. The experimental results demonstrate the performance of the proposed algorithm based on a set of benchmark problems in comparison with relevant algorithms

    Comparison of Evolutionary Optimization Algorithms for FM-TV Broadcasting Antenna Array Null Filling

    Get PDF
    Broadcasting antenna array null filling is a very challenging problem for antenna design optimization. This paper compares five antenna design optimization algorithms (Differential Evolution, Particle Swarm, Taguchi, Invasive Weed, Adaptive Invasive Weed) as solutions to the antenna array null filling problem. The algorithms compared are evolutionary algorithms which use mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. The focus of the comparison is given to the algorithm with the best results, nevertheless, it becomes obvious that the algorithm which produces the best fitness (Invasive Weed Optimization) requires very substantial computational resources due to its random search nature

    Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid

    Full text link
    Parameters of a virtual synchronous machine in a small microgrid are optimised. The dynamical behaviour of the system is simulated after a perturbation, where the system needs to return to its steady state. The cost functional evaluates the system behaviour for different parameters. This functional is minimised by Parallel Tempering. Two perturbation scenarios are investigated and the resulting optimal parameters agree with analytical predictions. Dependent on the focus of the optimisation different optima are obtained for each perturbation scenario. During the transient the system leaves the allowed voltage and frequency bands only for a short time if the perturbation is within a certain range.Comment: 17 pages, 5 figure
    • 

    corecore