503 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    An improved EEG pattern classification system based on dimensionality reduction and classifier fusion

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Analysis of brain electrical activities (Electroencephalography, EEG) presents a rich source of information that helps in the advancement of affordable and effective biomedical applications such as psychotropic drug research, sleep studies, seizure detection and brain computer interface (BCI). Interpretation and understanding of EEG signal will provide clinicians and physicians with useful information for disease diagnosis and monitoring biological activities. It will also help in creating a new way of communication through brain waves. This thesis aims to investigate new algorithms for improving pattern recognition systems in two main EEG-based applications. The first application represents a simple Brain Computer Interface (BCI) based on imagined motor tasks, whilst the second one represents an automatic sleep scoring system in intensive care unit. BCI system in general aims to create a lion-muscular link between brain and external devices, thus providing a new control scheme that can most benefit the extremely immobilised persons. This link is created by utilizing pattern recognition approach to interpret EEG into device commands. The commands can then be used to control wheelchairs, computers or any other equipment. The second application relates to creating an automatic scoring system through interpreting certain properties of several biomedical signals. Traditionally, sleep specialists record and analyse brain signal using electroencephalogram (EEG), muscle tone (EMG), eye movement (EOG), and other biomedical signals to detect five sleep stages: Rapid Eye Movement (REM), stage 1,... to stage 4. Acquired signals are then scored based on 30 seconds intervals that require manually inspecting one segment at a time for certain properties to interpret sleep stages. The process is time consuming and demands competence. It is thought that an automatic scoring system mimicking sleep expert rules will speed up the process and reduce the cost. Practicality of any EEG-based system depends upon accuracy and speed. The more accurate and faster classification systems are, the better will be the chance to integrate them in wider range of applications. Thus, the performance of the previous systems is further enhanced using improved feature selection, projection and classification algorithms. As processing EEG signals requires dealing with multi-dimensional data, there is a need to minimize the dimensionality in order to achieve acceptable performance with less computational cost. The first possible candidate for dimensionality reduction is employed using channel feature selection approach. Four novel feature selection methods are developed utilizing genetic algorithms, ant colony, particle swarm and differential evolution optimization. The methods provide fast and accurate implementation in selecting the most informative features/channels that best represent mental tasks. Thus, computational burden of the classifier is kept as light as possible by removing irrelevant and highly redundant features. As an alternative to dimensionality reduction approach, a novel feature projection method is also introduced. The method maps the original feature set into a small informative subset of features that can best discriminate between the different class. Unlike most existing methods based on discriminant analysis, the proposed method considers fuzzy nature of input measurements in discovering the local manifold structure. It is able to find a projection that can maximize the margin between data points from different classes at each local area while considering the fuzzy nature. In classification phase, a number of improvements to traditional nearest neighbour classifier (kNN) are introduced. The improvements address kNN weighting scheme limitations. The traditional kNN does not take into account class distribution, importance of each feature, contribution of each neighbour, and the number of instances for each class. The proposed kNN variants are based on improved distance measure and weight optimization using differential evolution. Differential evolution optimizer is utilized to enhance kNN performance through optimizing the metric weights of features, neighbours and classes. Additionally, a Fuzzy kNN variant has also been developed to favour classification of certain classes. This variant may find use in medical examination. An alternative classifier fusion method is introduced that aims to create a set of diverse neural network ensemble. The diversity is enhanced by altering the target output of each network to create a certain amount of bias towards each class. This enables the construction of a set of neural network classifiers that complement each other

    Diagnosis of Autism Spectrum Disorder Based on Brain Network Clustering

    Get PDF
    Developments in magnetic resonance imaging (MRI) provide new non-invasive approach—functional MRI (fMRI)—to study functions of brain. With the help of fMRI, I can build functional brain networks (FBN) to model correlations of brain activities between cortical regions. Studies focused on brain diseases, including autism spectrum disorder (ASD), have been conducted based on analyzing alterations in FBNs of patients. New biomarkers are identified, and new theories and assumptions are proposed on pathology of brain diseases. Considering that traditional clinical ASD diagnosis instruments, which greatly rely on interviews and observations, can yield large variance, recent studies start to combine machine learning methods and FBN to perform auto-classification of ASD. Such studies have achieved relatively good accuracy. However, in most of these studies, features they use are extracted from the whole brain networks thus the dimension of the features can be high. High-dimensional features may yield overfitting issues and increase computational complexity. Therefore, I need a feature selection strategy that effectively reduces feature dimensions while keeping a good classification performance. In this study, I present a new feature selection strategy that extracting features from functional modules but not the whole brain networks. I will show that my strategy not only reduces feature dimensions, but also improve performances of auto-classifications of ASD. The whole study can be separated into 4 stages: building FBNs, identification of functional modules, statistical analysis of modular alterations and, finally, training classifiers with modular features for auto-classification of ASD. I firstly demonstrate the whole procedure to build FBNs from fMRI images. To identify functional module, I propose a new network clustering algorithm based on joint non-negative matrix factorization. Different from traditional brain network clustering algorithms that mostly perform on an average network of all subjects, I design my algorithm to factorize multiple brain networks simultaneously because the clustering results should be valid not only on the average network but also on each individual network. I show the modules I find are more valid in both views. Then I statistically analyze the alterations in functional modules between ASD and typically developed (TD) group to determine from which modules I extract features from. Several indices based on graph theory are calculated to measure modular properties. I find significant alterations in two modules. With features from these two modules, I train several widely-used classifiers and validate the classifiers on a real-world dataset. The performances of classifiers trained by modular features are better than those with whole-brain features, which demonstrates the effectiveness of my feature selection strategy

    METACOGNITION REVEALED COMPUTATIONALLY

    Get PDF
    This paper focuses on current progress for the understanding of human cognition. Here different models have been considered such as MLP, FLANN, PNN, MLR, and HSN for recognition of one of the state of mind. It is argued that in addition to other models, PSO occupies a prominent place in the future of cognitive science, and that cognitive scientists should play an active role in the process. Baysian Approach in the same context has also discussed. The special case of predicting harm doing in a particular mental state has been experimented taking different models into account in depicting decision making as a process of probabilistic, knowledge-driven inference

    Machine Learning for Functional Brain Mapping

    Get PDF
    • …
    corecore