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ABSTRACT 

Developments in magnetic resonance imaging (MRI) provide new non-invasive approach—

functional MRI (fMRI)—to study functions of brain. With the help of fMRI, I can build 

functional brain networks (FBN) to model correlations of brain activities between cortical 

regions. Studies focused on brain diseases, including autism spectrum disorder (ASD), have 

been conducted based on analyzing alterations in FBNs of patients. New biomarkers are 

identified, and new theories and assumptions are proposed on pathology of brain diseases.  

Considering that traditional clinical ASD diagnosis instruments, which greatly rely on 

interviews and observations, can yield large variance, recent studies start to combine machine 

learning methods and FBN to perform auto-classification of ASD. Such studies have achieved 

relatively good accuracy. However, in most of these studies, features they use are extracted 

from the whole brain networks thus the dimension of the features can be high. High-

dimensional features may yield overfitting issues and increase computational complexity. 

Therefore, I need a feature selection strategy that effectively reduces feature dimensions while 

keeping a good classification performance.  

In this study, I present a new feature selection strategy that extracting features from functional 

modules but not the whole brain networks. I will show that my strategy not only reduces feature 

dimensions, but also improve performances of auto-classifications of ASD. The whole study 

can be separated into 4 stages: building FBNs, identification of functional modules, statistical 

analysis of modular alterations and, finally, training classifiers with modular features for auto-

classification of ASD. I firstly demonstrate the whole procedure to build FBNs from fMRI 

images. To identify functional module, I propose a new network clustering algorithm based on 

joint non-negative matrix factorization. Different from traditional brain network clustering 

algorithms that mostly perform on an average network of all subjects, I design my algorithm to 

factorize multiple brain networks simultaneously because the clustering results should be valid 

not only on the average network but also on each individual network. I show the modules I find 

are more valid in both views. Then I statistically analyze the alterations in functional modules 

between ASD and typically developed (TD) group to determine from which modules I extract 

features from. Several indices based on graph theory are calculated to measure modular 
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properties. I find significant alterations in two modules. With features from these two modules, 

I train several widely-used classifiers and validate the classifiers on a real-world dataset. The 

performances of classifiers trained by modular features are better than those with whole-brain 

features, which demonstrates the effectiveness of my feature selection strategy. 

 

Keywords: autism spectrum disorder, functional brain network, auto-classification, network 

clustering 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

1.1.1 Magnetic Resonance Imaging 

As the center of nervous system, brain is the most complex organ in a human body, controlling 

other parts of body with neuronal signals or hormones. Over the past decades, advances in brain 

imaging techniques, such as magnetic resonance imaging (MRI), computed tomography (CT) 

or positron emission tomography (PET), provide various non-invasive approaches to study 

brain anatomies and functions or diagnose brain diseases in vivo. Among all the imaging 

techniques, MRI stands out in brain studies, providing more details in soft tissues which are 

major components of brains [1]. Also compared with CT or PET, MRI does less harm to bodies 

due to exclusion of radiological materials.  

The physics of MRI can be generalized as calculating the time constant of hydrogen atoms in 

the scanned part of body returning from an excited state to an equilibrium state [2]. The atoms 

are put into a static magnetic field and are excited or magnetized by another oscillating magnetic 

field applied to it. After the oscillating magnetic field is removed, the exited atoms can recover 

to an equilibrium state and during this process, they emit radio frequency signals deteriorating 

exponentially with time that can be detected by a receiving coil. Different time constants of 

different tissues yield different magnitudes of MR signals which furtherly lead to the contrast 

in MRI images. Adjusting configuration of MRI scanning, I can detect boundary between two 

types of tissues. Distinguished by the direction of the radio frequency signal I measure from, 

there are T1- and T2-weighted images, where T1 measures the signal in the same direction as 

the static magnetic field and T2 transverse to the static magnetic field. T1-and T2- weighted 

images provide complementary information to each other. T1-weighted signals are stronger at 
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fatty tissues, or white matters (WM) in brains, while T1-weighted signals are stronger at more 

water content, or grey matters (GM) [3]. T1-and T2- weighted MRI images have been widely 

used in clinical diagnosis of brain diseases, such as Alzheimer’s disease, brain tumor, infectious 

disease, or traumatic brain injuries [4, 5, 6]. Researchers also attempt to link psychological 

disorders with abnormalities in MRI images [7]. 

Other MRI techniques are developed to study brains by setting different MRI pulse sequences, 

such as functional magnetic resonance imaging (fMRI) and diffusion weighted imaging (DWI). 

Measuring the blood-oxygen-level dependent (BOLD) signals, fMRI provides information on 

level of brain functional activities. When the neurons return to the original state from an 

activated state, they pump ions across the neuronal cell membranes. Since neurons themselves 

do not preserve energy, more glucose and oxygen must be transported immediately by blood 

for the ion pumps to consume. Such a process leads to a temporary increase in the concentration 

of oxygenated hemoglobin in the activated area. Oxygenated and deoxygenated hemoglobin 

react differently to the oscillating magnetic field from the MRI scanner. Deoxygenated 

hemoglobin loses magnetization faster, which yields contrast between activated and deactivated 

areas. In practice, I usually obtain a series of fMRI images along time to record fluctuation of 

functional activity during a period. Depending on the state of subjects during scanning, fMRI 

could be catalogued into resting state fMRI (rs-fMRI) and task related fMRI, where task related 

fMRI requires subjects to perform specific tasks while rs-fMRI, on the contrary, asks them to 

do nothing. While fMRI focuses on function of brain, DWI depicts the neuronal structure. DWI 

measures the rate of diffusion of water molecules in different directions. This relies on the fact 

that brain white matter has a fibrous structure similar to some anisotropic crystals and water 

flows more rapidly along the direction of fibers. Fractional anisotropy, which measures the 

degree of a diffusion process towards each direction, can be calculated to show that, at each 

location which direction neuronal fibers are more likely to expand to, indicating which brain 

areas are neuronally connected. 

Currently, DWI and fMRI have been adopted in many researches. Studies based on fMRI 

images have identified several brain regions coupled with critical cognitive functions, including 

vision, moving, emotion, memory, etc. [8]. Also, abnormalities in fMRI images are mapped to 
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pathology and symptom of brain diseases, such as Alzheimer’s disease (AD) or brain tumor [8], 

as well as neurodevelopmental diseases such as autism spectrum disorder (ASD) [9]. Compared 

with academical communities, fMRI is less accepted in clinical practices, but still has potential 

to provide complementary information on testing efficiency of treatments or degree of recovery 

of brain from diseases [10, 11]. DWI has also been implemented in several studies revealing 

subtle alterations in various diseases that relate to white matter abnormalities, e.g., AD is 

referred as neuronal disconnection [12, 13] and ASD is characterized as impairment of white 

matter neural circuitry yielding damaged high-order brain functions [14]. 

 

1.1.2 Brain Network Analysis and Clustering 

Having largely promoted my understanding on cytoarchitecture and functionality of brain, 

conventional methods focus on the brain images themselves, while recent studies find an 

alternative path to study brains from a network perspective. Since brains are complex systems 

functioning based on billions of connected neurons, naturally, brains can be viewed as networks. 

Compared with images, brain networks contain extra information about interaction among 

regions. With the help from graph theory and network analysis methods, studies on brain 

network analysis have revealed various insights on organization of functional and structural 

connectivity of brain cortices, including identification of critical hubs and modules, or study of 

global properties [15, 16, 17]. The results of such studies are mostly in a good agreement with 

results from anatomical experiments or studies based on images, meanwhile, help bring out new 

theories and explanations. 

Generally, there are two types of brain network—structural brain network and functional brain 

network (FBN). Structural network captures the neuronal structures, i.e., which brain regions 

are connected densely to each other by neurons, while functional network shows the functional 

organization, i.e., how brain regions correlated or cooperated with each other when performing 

certain cognitive functions. Thus, structural networks are built upon DWI images, usually by 

drawing tractography, and functional networks are derived from fMRI images, by calculating 

correlation values between BOLD signals. Networks built from task related fMRI can help link 
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brain activities to specific tasks. However, rs-fMRI is still widely-used in brain network analysis 

because even though the brain is in resting state, regions that normally interact with each other 

frequently still show strong correlation between them [18]. Therefore, FBNs built upon rs-fMRI 

provide intrinsic functional organization that is not biased by cognitive tasks. 

Numerous methods of network analysis have been implemented for brain networks, among 

which network clustering methods are proved to be efficient in identifying modules. Clustering, 

or cluster analysis, can be defined as a process of partitioning a set of objects into several groups 

where objects in the same group show more similarity or are closely related in certain ways. 

Such a group is usually called a cluster. For network clustering, I consider each vertex as an 

object and cluster the network based on connectivity among vertices. Vertices in the same 

cluster are supposed to be highly connected with each other and perform similar functions or 

serve common goals, and furtherly affect the functionality of the whole network. A special case 

of a cluster is called a clique where vertices in the cluster are connected to each other.  

Previous studies on brain network analysis have shown that brain networks have certain small-

world properties, such as high clustering coefficient and low characteristic path length [19, 20]. 

Small-world networks tend to have more cliques or nearly cliques, or in another words, vertices 

tend to form clusters. This matches my understanding that brain is a modular system where 

different brain parts have separated cognitive functions or anatomical organizations. In brain 

network clustering, especially for functional networks, a cluster is usually called a module, 

indicating the similarity of function inside the cluster. Thus, it is feasible to identify brain 

modules based on clustering methods. Implementations of clustering methods have successfully 

identified modules from different aspects of view. Study in [17] maps modules to cognitive 

functions while study in [21] links clusters with 4 types of behaviors.  

 

1.1.3 Brain Disease Related Studies Based on Brain Networks 

Previous studies also applied brain network analysis to brain diseases, including ASD [22, 23, 

24, 14, 25], AD [26, 27, 28, 29] or schizophrenia [30, 31, 32]. ASD is a neurodevelopmental 

disorder characterized by repetitive social behavior, restricted interests and mental inflexibility 
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[33]. It is estimated that about 1% of global population is suffering from ASD [34] and the 

percentage has the trend to increase in the past two to three decades [35, 36]. Increased public 

awareness on ASD has appealed to numerous studies focused on different perspectives. From 

brain images, various biomarkers shared widely among subjects with ASD have been identified, 

such as regional and global overgrowth of brain volumes in early childhood [37] or hyper- and 

hypo-activation of cortical regions [38, 39, 40, 41, 42].  

As mentioned before, brain network analysis has yielded new results in organization of brain 

connectivity, so naturally, it can be promising to use it to study ASD. Advanced imaging 

techniques, such as DWI and fMRI, also provide valid data sources to build brain networks. 

Recent studies on brain network analysis on networks of ASD group and typically developed 

(TD) group have found various alterations possibly caused by ASD. Hyper- and hypo-

connectivity among certain regions are widely reported in several investigations [43, 44, 45], 

indicating possible causes of ASD symptoms. Developmental changes in brain networks are 

also studied, using data collected from subjects with different ages [46, 47]. There are also 

studies about the differences appeared in subcategories of ASD, such as high-functioning ASD 

and Asperger syndrome, and diseases closely related to ASD, e.g., attention deficit hyperactivity 

disorder (ADHD) [48, 49, 50].  

Machine learning based methods, including deep learning methods, are also implemented in 

many recent studies in analyzing brain networks of ASD subjects. Machine learning means 

building a mathematical model to make decisions with a given dataset while the model is not 

programmed explicitly for the task, or the model learns to make correct decisions by itself 

progressively [51]. Generally, there are unsupervised machine learning referred as data mining 

and supervised machine learning referred as predictive analytics. In unsupervised machine 

learning, the machine is not told the labels of sample, while supervised machine learning is on 

the contrary. Unsupervised machine learning is widely used for cluster analysis, which divide 

samples into groups, while supervised machine learning is mostly developed for predicting 

unknown labels. Studies using machine learning on brain diseases are mostly focused on 

identifying new biomarkers [52, 53] and auto-classification of different groups of subjects [54, 

55, 56], i.e., ASD versus TD. Clinical ASD diagnosing approaches, require much 
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communication and observation of subjects, thus the results could be easily biased by clinicians’ 

personal judgements and expectations [57]. So auto-classification can provide complementary 

approaches for clinical diagnosis. 

 

1.2 Problem Statement 

 

As mentioned above, small-worldness of brain networks guarantees accuracy of network 

clustering methods to find modules, and existing methods have successfully identified some. 

However, clustering methods previously implemented may be flawed as previous studies 

mostly calculate an average network as the input to the clustering algorithms. Generally, an 

average network is obtained by taking average over all individual networks which are built 

upon data collected from single subjects. However, by taking average, information contained 

by individual networks could be lost. Another point is that resulted modules are valid on the 

average network but may be less valid on each individual network. Although the individual 

networks are not the same, I believe the modular organization of brain networks of different 

subjects should not differ much. On the other hand, if I cluster on single individual networks, 

the clustering results could differ much from each other. Therefore, I should develop a 

clustering algorithm that identifies valid modules for each subject.  

Previous studies on auto-classification of ASD mainly use features extracted from the whole 

brain to train the classifiers. Considering the sizes of brain networks are usually large, the 

dimensions of feature vectors could also be relatively high. In machine learning, high 

dimensional feature vectors could lead to overfitting issues and increased computational 

complexity. Therefore, in this study, to reduce feature dimension, I propose a new feature 

selection strategy that only use features from a module identified by a clustering algorithm. To 

determine from which module I obtain features, I also test the significance level of modular 

differences between ASD and TD subjects. Considering previous studies are mostly focused on 

global or nodal alterations, investigating alterations in modules can also build a clearer link 

between functions of brain and ASD, since global alterations may fail to connect ASD 



7 
 

symptoms to cerebral regions. Also, since vertices in modules are highly correlated, alterations 

in one vertex may have an impact on others or the whole module, either.  

 

1.3 Objectives and Basic Ideas 

 

Generally, the goal of this research is to develop a new strategy to selection features from a 

single module to reduce feature dimension or disease diagnosis.  

To achieve this objective, firstly, I propose a new network clustering algorithm designed for 

brain networks. The algorithm is based on non-negative matrix factorization (NMF), but 

different from ordinary NMF, my algorithm factorizes multiple matrices simultaneously. I 

evaluate the clustering results with some common indices and demonstrate my method 

outperforms other competing ones. 

Secondly, to demonstrate there are actual differences between modules of ASD and TD 

networks, and to choose the module to extract features from, I calculate some modular indices 

and use t-test to demonstrate the significance level of modular difference. I find that one module 

has significant differences than others, so I extract modular features from this module.  

Thirdly, I train some classifiers which were also previously used in literature, with modular and 

whole-brain features, separately. I show that classifiers trained with modular features have 

better performances. 

 

1.4 Thesis Organization 

 

In Chapter 1, I introduce the background of this study, the problem statement, the major 

objective and my basic idea for achieving it and the overview of this thesis. In Chapter 2, I 

introduce the dataset I use and the whole process to build brain networks from MRI images. In 

Chapter 3, I introduce a new network clustering algorithm for identifying brain modules and I 

show the clustering results. In Chapter 4, I do some statistical analysis to find significant 
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modular alterations. In Chapter 5, I use modular features to do classification of ASD with 

several commonly-used classifiers. In Chapter 6, I conclude this study. 
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CHAPTER 2 

BRAIN IMAGE DATASETS AND BUILDING BRAIN NETWORKS 

In this chapter, I introduce the database I collect from and more details of the dataset I use for 

both clustering and classification. Then I introduce the whole procedure to build brain networks 

from MRI images, including the preprocessing of images, defining vertices by brain cortex 

partitioning, and using information in images to derive edges. As introduced before, there are 

structural networks and functional networks. However, in this study, I only focus on FBNs. 

Therefore, in this chapter, I only introduce the procedure to build FBNs. 

 

2.1 Database and Dataset 

 

The data used in this research can be found in Autism Brain Imaging Data Exchange (ABIDE, 

http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) [58]. Up to date, the database has 

included data of over 1500 subjects, uploaded by multiple institutions, following the same data 

aggregation strategy. In this database, data of each subject usually contain both structural 

images (T1-weighted, [59]) and functional images (fMRI), as well as phenotypic information 

such as test scores of ASD assessing and diagnosing instruments. Other information is also 

included, like age of subjects, IQ, sex, medication situation, etc. 

The MRI image data I use is acquired in UCLA with the configuration of scanning introduced 

in [24]. The dataset totally contains 79 subjects, including 37 from TD subjects and 42 from 

ASD subjects. Ages of the subjects ranges from 8.36 to 18.18 with a mean of 13.20 and standard 

deviation of 2.43. For each subject, I build an FBN. The detailed procedure is introduced in the 

following sections, including preprocessing of MRI images, and defining vertices and edges. I 

should notice that all FBNs are built from rs-fMRI images, but the network building pipeline 

can also be implemented to task-related fMRI data. The FBNs can be also found in UCLA 
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multimodal connectivity database [60].  

 

2.2 Preprocessing of fMRI Images 

 

Image data are preprocessed using two toolboxes, AFNI [61] and FSL [62], installed in Linux 

environment (Ubuntu 18.04). The two toolboxes provide various functions for image 

processing and statistical analysis of several types of MRI images. In the preprocessing stage, 

I use both T1-weighted images and rs-fMRI images, but the T1-weighted images are only for 

image registration and brain segmentation, which means they are only used in this section. As 

I know, fMRI data contains a series of images along time. A single image is also called a volume 

or a brick in fMRI data processing. Images of each subject are processed independently. 

The whole preprocessing scheme is inspired by a pipeline incorporated in AFNI but with my 

own modifications. In functional BOLD images and T1-weighted images, brain-only images 

are extracted from skulls and other surrounding noise areas using AFNI (3dAutomask and 

3dSkullStrip, with default settings). Functional volumes on time series are motion corrected 

using FSL MCFLIRT tool [63]. Volumes are registered to a mean volume with a normalized 

correlation cost function and are resampled with sinc interpolation. In general, image 

registration means aligning multiple images by rotating, translating, scaling and skewing them 

to achieve maximal overlapping. In this case, overlapping is measured by normalized 

correlation. Sinc interpolation is to fill the empty space between voxels to increase the 

resolution. 6 parameters corresponding to 6 degrees of freedom for rigid body movement 

(translation and rotation along x, y, z axes) are calculated for each volume from MCFLIRT. If 

the root mean square displacement over all voxels between two consecutive volume is over 2.5 

mm, I consider this subject as an outlier and leave it out for any future processing and analysis. 

Images are applied a Gaussian kernel with full width at half maximum (FWHM) of 5.0 mm for 

spatial smoothing. 9 covariates are regressed out of the images including 6 parameters of rigid 

body movement and average time series of WM, Cerebrospinal fluid (CSF) and the whole brain. 

I consider the 9 covariates as the noise factors and use linear regression to calculate the residual 
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as the denoised volumes. WM and CSF signals are regressed out because most of neuronal 

activities occur in GM, since GM contains more neuronal cell bodies and less axons, compared 

with WM. Thus, WM and CSF signals mostly reflect non-neural fluctuations such as scanner 

instability, which may lead to unnecessarily increased inter-regional functional correlation 

strength [64, 65]. Average whole brain signal is also considered to contain noises such as 

respiratory and cardiac noise or psychological noises [66]. I also regress out head motion 

parameters because it may cause spurious signal and affect further network analysis [67]. To 

separate WM and CSF signal, I first segment WM and CSF tissues with FSL FAST [68] on T1-

weighted images, then calculate their average time series with AFNI 3dmaskave. The regression 

is fulfilled with AFNI 3dDeconvolve and 3dREMLfit. A bandpass filter of 0.01-0.1 Hz is 

applied to the images to isolate fluctuation caused by respiration and heartbeat. All functional 

volumes are registered to the MNI 152 standard space, which is an average of 152 T1-weighted 

images and is integrated in FSL, using a structural image as a medium, i.e., functional volumes 

are firstly registered to structural images, then structural images are registered to MNI 152 

standard space and two transformations are concatenated. The two-step registration is 

conducted in FSL FLIRT, with affine transformation (12 degrees of freedom) and mutual 

information cost function for both steps. In motion correction, I only use 6 parameters since the 

sizes of the brains in each volume are the same, though 12 parameters also describing skewing 

other than rotation and translation. 

This pipeline includes steps that are shared in many researches, but the actual implementation 

of each step, like the parameter settings, or the order of the steps, may vary in other studies. 

Especially for the noise regression step, many other regressors can be added, such as the 

derivatives or the principle components of the regressors I choose. Additionally, although the 

use of global average signal is commonly-used, but there are several studies showing that 

regressing out global signal may increase negative connectivity [69, 70]. Therefore, the pipeline 

should be adjusted for different situations. 
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2.3 Building Brain Networks 

 

Networks contain two elementary objects: vertices and edges connecting vertices. Thus, 

building brain networks from brain images contains two steps: defining vertices and generating 

connections among vertices. 

 

2.3.1 Defining Vertices 

Vertices in brain networks represent brain regions, or regions of interest (ROI). I partition the 

whole brain cortex into small ROIs and each ROI corresponds to a vertex in the networks and 

networks of all subjects share the same set of ROIs. 

In previous studies, anatomical atlases are implemented to define ROIs [16, 15, 71]. An 

anatomical atlas is a partitioning of cortex based on anatomical features such as sulci and gyri. 

Commonly used anatomical atlases includes Desikan Atlas, Destrieux Atlas, AAL, etc. [72, 73, 

74]. Such atlases have been proved efficient in building structural brain networks but maybe 

defective for functional networks. The regions from anatomical atlases are relatively large so 

each of them may cover several sub-regions with different functions, from where the signals 

collected are a mixture corresponding to several functions and distort the networks. In some 

other cases, voxelwise ROIs are defined to reach a high resolution [17]. Here, each ROI is a 

voxel in brain images, so the sizes of resulted brain networks could be extremely large, 

meanwhile, carrying lots of information irrelevant to global analysis [16] (e.g. A network built 

with voxelwise ROI in [17] contains over 44,000 vertices.). 

The brain networks used in this research are built on ROIs introduced in [17]. Different from 

anatomical or voxelwise atlas mentioned above, ROIs here are defined based on brain 

functional information, or on fMRI images. The basis of defining ROIs here is to find regions 

obviously activated or distinguished from neighbors in rs-fMRI or task-related fMRI. For task-

related fMRI, the subjects are asked to perform a series of tasks including verb generation, 

button pushing etc. 322 ROIs are identified to be activated through several tasks. For rs- fMRI, 

the images show obvious transition of fMRI signal correlation which forms boundaries that 
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partition the cortex into regions. 254 ROIs are identified from this method. Combining ROIs 

from the two methods and removing overlapped ones, 264 ROIs are finally generated and 

modeled into vertices. The 264 ROIs can be represented by spheres with 5 mm radius and 

centered at coordinates in MNI 152 standard space. 

 

2.3.2 Defining Edges 

Identifying connections among ROIs is the second step to build brain networks. Functional and 

structural brain networks can have identical ROIs but how the connections are defined 

distinguishes them. Functional connections are supposed to quantify functional correlation or 

similarity between cortical regions, while structural connections focus on describing neuronal 

structure bedding inside cerebral cortex.  

Functional connections, as mostly rely on fMRI data, are built upon the fact that small cortical 

regions are not acting alone. In fMRI scanning, I can obtain a signal in time series for each ROI 

I defined in the last step. Then between every pair of ROIs, Pearson correlation coefficient 

(PCC) can be calculated to quantify the correlations. For two time series 𝑇1 and 𝑇2 with the 

same dimension, PCC can be defined as follows: 

𝑃𝐶𝐶(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑇1, 𝑇2)

𝜎𝑇1
𝜎𝑇2

(2.1) 

where 𝑐𝑜𝑣 represents the covariance and 𝜎 is the standard deviation. PCC ranges from -1 to 

1 where 1 means signals from two ROIs are perfectly positive correlated with each other while 

-1 means perfectly negative correlated. The value of PCC between two ROIs is also the weight 

of edge between two corresponding vertices in the functional network. The networks are 

represented by 264 × 264 connectivity matrices, where each row or column corresponds to a 

vertex and each element is the edge weight or functional correlation between two vertices. In 

Figure 2.1, I present a flowchart demonstrating the whole process for building FBNs, including 

preprocessing of fMRI images.  
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Figure 2.1 A flowchart showing the whole process for building FBNs. ROIs shown are defined 

in [17].  
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CHAPTER 3 

JOINT SYMMETRICAL NON-NEGATIVE MATRIX FACTORIZATION FOR BRAIN 

NETWORK CLUSTERING 

 

3.1 Introduction 

 

My newly developed clustering algorithm, named joint symmetrical non-negative matrix 

factorization (JSNMF), is an NMF-based method able to cluster several networks with identical 

vertex set simultaneously. 

NMF is an unsupervised machine learning method capable of extracting lower dimensional 

features [75]. Introduced in [76], original NMF method aims to solve an optimization problem 

min
𝑊,𝐻

‖𝐴 − 𝑈𝑍‖𝐹
2 , (3.1) 

where ‖∙‖𝐹 is Frobenius norm, 𝐴 is the original feature matrix with each row being a feature 

vector of a object and each row of 𝑈 is a feature vector with lower dimension than those in 𝐴. 

In this way, entries in 𝐴  can be viewed as linear combinations of row vector in 𝑈  using 

coefficients given in corresponding column of 𝑍. Based on the feature matrix 𝑈, I can furtherly 

do the clustering using methods such as k-means. Following that, a variety of NMF methods 

has been developed and implemented successfully on many datasets [77]. For network 

clustering, [78] introduced an NMF-based algorithm to identify overlapping clusters and 

implemented it for social networks, and [79] presented another one doing the same job but also 

focusing on identification of hubs and outliers. In addition, [80] shows that NMF is efficient in 

finding protein complexes in protein-protein interaction networks. 

Usually, the optimization of equation (3.1) cannot be solved analytically. Therefore, in most of 

cases, the updating rules are derived to solve them numerically. I should also notice that depends 

on the initialization of 𝑈 and 𝑍, a global minimum of (3.1) may not be reachable, but a local 
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one usually suffices. 

Traditional NMF methods factorizes one matrix at a time, however, real-world dataset may 

contain multiple views, or attributes, of a set of objects, where each view delivers information 

from a different perspective. Traditional NMF methods may not deal with such situations well, 

since they can only learn from one view at a time and the views usually complement each other. 

Therefore, it would be more reasonable if I find a way to integrate information from all the 

views to cluster the objects. Recently, several multi-view clustering algorithms are developed 

[81, 82, 83, 84]. One subtype of multi-view clustering methods is to build a joint loss function 

that combines every view, then solve for a consensus indicating clustering information. [85] 

and [83] introduce two spectral-clustering-based methods and [81, 82, 84] proposed another 

one based on NMF. 

In this study, since individual networks are obtained from single subjects, I assume each of them 

to be a view, representing a different organization of connectivity of the objects which are 

cortical ROIs. Previously developed multi-view methods are designed for general clustering 

cases where there are no constraints for input feature matrices, while brain networks are 

represented by symmetrical matrices. When factorizing symmetrical matrices, the problem can 

be formulated as follows 

min
𝐻

‖𝐴 − 𝐻𝐻𝑇‖𝐹
2 (3.2)  

or 

min
𝐻,𝑆

‖𝐴 − 𝐻𝑆𝐻𝑇‖𝐹
2 (3.3) 

where 𝐴 is the adjacency matrix of a network and 𝐻 is the feature matrix. According to [86], 

such factorization is equivalent to kernel k-means and spectral clustering.  

In this chapter, I present an NMF-based multi-view network clustering method called JSNMF 

to find modules in functional brain networks. I will validate my clustering results and compare 

with other competing methods.  
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3.2 Methods 

 

3.2.1 JSNMF 

Similar to other NMF methods, JSNMF solves an optimization problem but with minimizing a 

different objective function 

𝑂𝐽𝑆𝑁𝑀𝐹 = ∑‖𝐴(𝑣) − 𝐻𝑆(𝑣)𝐻𝑇‖
2

𝐹

𝑛

𝑣=1

+ 𝛼 ∑ ∑|𝐻𝑖𝑗|

𝐾

𝑗=1

𝑁

𝑖=1

  

𝑠. 𝑡. 𝐻 ≥ 0, 𝑆(𝑣) ≥ 0 for 𝑣 = 1, … , 𝑛 (3.4) 

where 𝐴(𝑣) ∈ 𝑅≥0
𝑁×𝑁 , 𝑅≥0 = {𝑥 ∈ 𝑅|𝑥 ≥ 0}  denotes an single view in a dataset 𝐴 =

{𝐴(1), … , 𝐴(𝑛)} , representing an individual brain network in my case, 𝐻 ∈ 𝑅≥0
𝑁×𝐾  is the 

consensus I obtain from all the views as the feature matrix and cluster indicator and 𝑆(𝑣) ∈

𝑅≥0
𝐾×𝐾, and 𝛼 is a positive regularization factor to make sure 𝐻 is sparse. 𝐾 is the reduced 

dimension and also the number of clusters that I set in priori. Different from methods in [81, 

82, 84], JSNMF is designed specifically for factorization of symmetrical matrix, and I use the 

form in (3.3) but not (3.2) because 𝑆(𝑣) provides extra degrees for freedom so that I can get 

closer estimation of 𝐴(𝑣). 

Rewriting the Frobenius norm in Equation (3.4) into the trace form, I have 

𝑂𝐽𝑆𝑁𝑀𝐹 = 𝑡𝑟 (∑ (𝐴(𝑣)2
− 2𝐴(𝑣)𝐻𝑆(𝑣)𝐻𝑇 + (𝐻𝑆(𝑣)𝐻𝑇)

2
)

𝑛

𝑣=1

) + 𝛼 ∑ ∑|𝐻𝑖𝑗|

𝐾

𝑗=1

𝑁

𝑖=1

 , (3.5) 

where 𝑡𝑟(∙) denotes the trace of a matrix. 

To minimize (3.5), I can employ the Lagrange multiplier and turn () into a new optimization 

problem without any constraints 

𝑂𝐿 = 𝑡𝑟 (∑ (𝐴(𝑣)2
− 2𝐴(𝑣)𝐻𝑆(𝑣)𝐻𝑇 + (𝐻𝑆(𝑣)𝐻𝑇)

2
)

𝑛

𝑣=1

) + 𝛼 ∑ ∑|𝐻𝑖𝑗|

𝐾

𝑗=1

𝑁

𝑖=1

+ 𝑡𝑟(𝐻𝑇Λ) , (3.6) 

where Λ ∈ 𝑅𝑁×𝐾 is Lagrange multipliers for 𝐻. To find minima of 𝑂𝐿, I can solve 
𝜕𝑂𝐿

𝜕𝑆(𝑣) = 0 
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and  
𝜕𝑂𝐿

𝜕𝐻
= 0 for 𝑆(𝑣) and 𝐻, respectively. Here,  

𝜕𝑂𝐿

𝜕𝑆(𝑣)
= −2𝐻𝑇𝐴(𝑣)𝐻 + 2𝐻𝑇𝐻𝑆(𝑣)𝐻𝑇𝐻 (3.7) 

𝜕𝑂𝐿

𝜕𝐻
= ∑(−4𝐴(𝑣)𝐻𝑆(𝑣) + 4𝐻𝑆(𝑣)𝐻𝑇𝐻𝑆(𝑣))

𝑛

𝑣=1

+ Λ + 𝛼𝐸 (3.8) 

where 𝐸 = 1𝑁×𝐾.  

𝜕𝑂𝐿

𝜕𝑆(𝑣) = 0 can be directly solved and I have  

𝑆(𝑣) = (𝐻𝑇𝐻)−1𝐻𝑇𝐴(𝑣)𝐻(𝐻𝑇𝐻)−1 . (3.9) 

To find the solution of 
𝜕𝑂

𝜕𝐻
= 0, I could use an updating rule 

𝐻𝑖𝑗 ← 𝐻𝑖𝑗 (
4(∑ 𝐴(𝑣)𝐻𝑆(𝑣)𝑛

𝑣=1 )
𝑖𝑗

(𝛼 + 4 ∑ (𝐻𝑆(𝑣)𝐻𝑇𝐻𝑆(𝑣))𝑛
𝑣=1 )𝑖𝑗

)

1
4

 . (3.10) 

Proof of convergence of the updating rule is as follows. 

For a function 𝐹(𝐻) , function 𝑍(𝐻, 𝐻′)  is an auxiliary function of 𝐹(𝐻)  if 𝑍(𝐻, 𝐻) =

𝐹(𝐻) and 𝑍(𝐻, 𝐻′) ≥ 𝐹(𝐻). According to [75], 𝐹(𝐻) is non-increasing with the updating 

rule  

𝐻 = 𝑎𝑟𝑔 min
𝐻

𝑍(𝐻, 𝐻′) (3.11) 

because 

𝐹(𝐻0) = 𝑍(𝐻0, 𝐻0) ≥ 𝑍(𝐻1, 𝐻0) ≥ 𝐹(𝐻1) … (3.12) 

if 𝐻1 = 𝑎𝑟𝑔 min
𝐻

𝑍(𝐻, 𝐻0) and so on. In this case, given 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻), its auxiliary function of 

can be defined as 
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𝑍(𝐻, 𝐻′)

= ∑ (𝐴(𝑣)2
− 2 ∑ 𝐻𝑖𝑗

′ 𝑆𝑗𝑘
(𝑣)

𝐻𝑙𝑘
′ 𝐴𝑙𝑖

(𝑣)
(1 + log

𝐻𝑖𝑗𝐻𝑙𝑘

𝐻𝑖𝑗
′ 𝐻𝑙𝑘

′ )

𝑖𝑗𝑘𝑙

+ ∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 )

𝑛

𝑣=1

                                              +𝛼 ∑
𝐻𝑖𝑗

′ (𝐻𝑖𝑗
4 + 𝐻𝑖𝑗

′ 4
) + 2𝐻𝑖𝑗

′ 5

4𝐻𝑖𝑗
′ 4

𝑖𝑗

 .                                                  (3.13)

 

To prove 𝑍(𝐻, 𝐻′) is an auxiliary function of 𝑂𝐽𝑆𝑁𝑀𝐹, I can obviously see that 𝑍(𝐻, 𝐻) =

𝑂𝐽𝑆𝑁𝑀𝐹(𝐻). Thus, the following steps prove 𝑍(𝐻, 𝐻′) ≥ 𝐹(𝐻). 

I separate 𝑍(𝐻, 𝐻′) into 3 terms, each corresponding to a term in 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻). Since 𝐴(𝑣)2
 

does not include 𝐻, I do not consider it. Firstly, since ∀ 𝑧 > 0, 𝑧 ≥ 1 + log 𝑧, if I consider 𝑧 =

𝐻𝑖𝑗𝐻𝑙𝑘

𝐻𝑖𝑗
′ 𝐻𝑙𝑘

′ , then 

∑ 𝐻𝑖𝑗
′ 𝑆𝑗𝑘

(𝑣)
𝐻𝑙𝑘

′ 𝐴𝑙𝑖
(𝑣)

(1 + log
𝐻𝑖𝑗𝐻𝑙𝑘

𝐻𝑖𝑗
′ 𝐻𝑙𝑘

′ )

𝑖𝑗𝑘𝑙

≤ ∑ 𝐻𝑖𝑗𝑆𝑗𝑘
(𝑣)

𝐻𝑙𝑘𝐴𝑙𝑖
(𝑣)

𝑖𝑗𝑘𝑙

= 𝑡𝑟(𝐴(𝑣)𝐻𝑆(𝑣)𝐻𝑇) . (3.14) 

Secondly, following [87], if I consider 𝐻𝑖𝑗 = 𝜇𝑖𝑗𝐻𝑖𝑗
′ , I have 

∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 = ∑ 𝐻𝑖𝑘

′ 𝑆𝑘𝑝
(𝑣)

𝐻𝑞𝑝
′ 𝐻𝑞𝑟

′ 𝑆𝑟𝑗
(𝑣)

𝐻𝑖𝑗
′ 𝜇𝑖𝑗

4

𝑖𝑗𝑘𝑝𝑞𝑟

 . (3.15) 

Switching indices, I have another three equations 

∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 = ∑ 𝐻𝑞𝑝

′ 𝑆𝑝𝑘
(𝑣)

𝐻𝑖𝑘
′ 𝐻𝑖𝑗

′ 𝑆𝑗𝑟
(𝑣)

𝐻𝑞𝑟
′ 𝜇𝑞𝑟

4

𝑖𝑗𝑘𝑝𝑞𝑟

(3.16) 

∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 = ∑ 𝐻𝑞𝑟

′ 𝑆𝑟𝑗
(𝑣)

𝐻𝑖𝑗
′ 𝐻𝑖𝑘

′ 𝑆𝑘𝑝
(𝑣)

𝐻𝑞𝑝
′ 𝜇𝑞𝑝

4

𝑖𝑗𝑘𝑝𝑞𝑟

(3.17) 

∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 = ∑ 𝐻𝑖𝑗

′ 𝑆𝑗𝑟
(𝑣)

𝐻𝑞𝑟
′ 𝐻𝑞𝑝

′ 𝑆𝑝𝑘
(𝑣)

𝐻𝑖𝑘
′ 𝜇𝑖𝑘

4

𝑖𝑗𝑘𝑝𝑞𝑟

 . (3.18) 

According to Equation (3.9), 𝑆(𝑣) is always symmetrical. Thus, adding Equations (3.15) to 

(3.18) together, I get 
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∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 = ∑ 𝐻𝑖𝑘

′ 𝑆𝑘𝑝
(𝑣)

𝐻𝑞𝑝
′ 𝐻𝑞𝑟

′ 𝑆𝑟𝑗
(𝑣)

𝐻𝑖𝑗
′

𝜇𝑖𝑗
4 + 𝜇𝑞𝑟

4 + 𝜇𝑞𝑝
4 + 𝜇𝑖𝑘

4

4
𝑖𝑗𝑘𝑝𝑞𝑟

 . (3.19) 

Since ∀𝑎, 𝑏, 𝑐, 𝑑 ≥ 0, 𝑎4 + 𝑏4 + 𝑐4 + 𝑑4 ≥ 4𝑎𝑏𝑐𝑑, I can easily prove 

∑(𝐻′𝑆(𝑣)𝐻′𝑇
𝐻′𝑆(𝑣))

𝑖𝑗
𝑖𝑗

𝐻𝑖𝑗
4

𝐻′
𝑖𝑗
3 ≥ ∑ 𝐻𝑖𝑘

′ 𝑆𝑘𝑝
(𝑣)

𝐻𝑞𝑝
′ 𝐻𝑞𝑟

′ 𝑆𝑟𝑗
(𝑣)

𝐻𝑖𝑗
′ 𝜇𝑖𝑗𝜇𝑞𝑟𝜇𝑞𝑝𝜇𝑖𝑘

𝑖𝑗𝑘𝑝𝑞𝑟

= ∑ 𝐻𝑖𝑘𝑆𝑘𝑝
(𝑣)

𝐻𝑞𝑝𝐻𝑞𝑟𝑆𝑟𝑗
(𝑣)

𝐻𝑖𝑗

𝑖𝑗𝑘𝑝𝑞𝑟

= 𝑡𝑟 ((𝐻𝑆(𝑣)𝐻𝑇)
2

) . (3.20)

 

Thirdly, since ∀ 𝑎, 𝑏 ≥ 0, 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, it can be proved that 

∑
𝐻𝑖𝑗

′ (𝐻𝑖𝑗
4 + 𝐻𝑖𝑗

′ 4
) + 2𝐻𝑖𝑗

′ 5

5𝐻𝑖𝑗
′ 4

𝑖𝑗

= ∑

𝐻𝑖𝑗
′ (𝐻𝑖𝑗

4 + 𝐻𝑖𝑗
′ 4

)

𝐻𝑖𝑗
′ 3 + 2𝐻𝑖𝑗

′ 2

2𝐻𝑖𝑗
′

𝑖𝑗

 

≥ ∑
𝐻𝑖𝑗

2 + 2𝐻𝑖𝑗
′ 2

2𝐻𝑖𝑗
′

𝑖𝑗

≥ ∑ 𝐻𝑖𝑗

𝑖𝑗

 . (3.21) 

Adding inequalities (3.14), (3.20) and (3.21) together, I can prove 𝑍(𝐻, 𝐻′) ≥ 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻) , 

thus 𝑍(𝐻, 𝐻′)  is an auxiliary function of 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻) . 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻)  is non-increasing under 

the updating rule 𝐻 = 𝑎𝑟𝑔 min
𝐻

𝑍(𝐻, 𝐻′). Since 𝑂𝐽𝑆𝑁𝑀𝐹(𝐻) has a lower bound of 0, it would 

converge eventually.  

Now following [87], I should look for the solution to 𝑎𝑟𝑔 min
𝐻

𝑍(𝐻, 𝐻′) in the updating rule. 

To find minimum of 𝑍(𝐻, 𝐻′), I could take the first partial derivative of 𝑍(𝐻, 𝐻′) with respect 

to 𝐻 

𝜕𝑍(𝐻, 𝐻′)

𝜕𝐻𝑖𝑗
= ∑ (−4

𝐻𝑖𝑗
′ (𝐴(𝑣)𝐻′𝑆(𝑣))

𝑖𝑗

𝐻𝑖𝑗
+ 4(𝐻′𝑆(𝑣)𝐻′𝑇

𝐻′𝑆(𝑣))
𝑖𝑗

𝐻𝑖𝑗
3

𝐻𝑖𝑗
′ 3)

𝑛

𝑣=1
+ 𝛼

𝐻𝑖𝑗
3

𝐻𝑖𝑗
′ 3  . (3.22) 

Then the Hessian matrix  

𝜕2𝑍(𝐻, 𝐻′)

𝜕𝐻𝑖𝑗𝜕𝐻𝑘𝑙
= 𝛿𝑖𝑘𝛿𝑗𝑙 ∑ (4

𝐻𝑖𝑗
′ (𝐴(𝑣)𝐻′𝑆(𝑣))

𝑖𝑗

𝐻𝑖𝑗
2 + 12(𝐻′𝑆(𝑣)𝐻′𝑇

𝐻′𝑆(𝑣))
𝑖𝑗

𝐻𝑖𝑗
2

𝐻′
𝑖𝑗
3 )

𝑛

𝑣=1

+3𝛼𝛿𝑖𝑘𝛿𝑗𝑙

𝐻𝑖𝑗
2

𝐻𝑖𝑗
′ 3  , (3.23)
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where 𝛿𝑎𝑏 = {
1,   𝑎 = 𝑏

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. The Hessian matrix is a diagonal matrix with all non-negative 

entries, thus it is positive semidefinite, which indicates that 𝑍(𝐻, 𝐻′) is a convex function. So 

in this case, 𝑎𝑟𝑔 min
𝐻

𝑍(𝐻, 𝐻′) can be found by solving 
𝜕𝑍(𝐻,𝐻′) 

𝜕𝐻𝑖𝑗
= 0 and I get 

𝐻𝑖𝑗 = 𝐻𝑖𝑗
′ (

4 ∑ (𝐴(𝑣)𝐻′𝑆(𝑣))
𝑖𝑗

𝑛
𝑣=1

𝛼 + 4 ∑ (𝐻′𝑆(𝑣)𝐻′𝑇𝐻′𝑆(𝑣))
𝑖𝑗

𝑛
𝑣=1

)

1
4

 , (3.24) 

which is the same as the updating rule present in Equation (3.10). 

Cluster indicator 𝐻  can help determine which cluster a vertex belongs to. If 𝐻𝑖𝑗  is the 

maximum value in 𝑖th row of 𝐻, then vertex 𝑖 will be assigned to cluster 𝑗. In my processing, 

each column of 𝐻 is also normalized so that maximum values of columns are all one. This is 

to balance the numbers of vertices in each cluster in case sizes of certain clusters are too large 

or too small. 

 

3.2.2 Evaluating Indices for Clustering Results 

To measure the performance of my method in functional brain network clustering, I adopt 3 

indices, modularity, conductance and coverage, to quantify the quality of the clustering results.  

Generally, in previous studies, most indices developed to evaluate a clustering can be 

categorized into two kinds: external indices and internal indices. External indices use external 

information to decide whether a clustering is proper. Commonly used external indices, such as 

normalized mutual information (NMI) [88] or adjusted rand index (ARI) [89], compare the 

similarity between two clusterings, one of which is to be evaluated and the other one is a 

standard. Obviously, the more similar two clusterings are, the better a clustering method is. 

Such external indices, however, are not suitable in my case. Although there are several studies 

about functional module of brains [17, 21], there is no widely accepted standard for partitioning 

the whole-brain networks, especially in a functional way. In the following sections for 

evaluating my clustering results, I will introduce some identified functional modules as 

references to demonstrate that my clustering actually has biological meanings but here, to 
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evaluate the quality of clustering, I turn to some internal indices which require no external 

information. There are various internal indices developed to evaluate clustering, such as 

Silhouette index [90] or Dunn index [91], but these are designed for general clustering cases 

where the objects are points in Euclidean space. For network clustering, I have several indices 

specifically developed and implemented on my clustering results, which are modularity, 

conductance and coverage. In the following section, I will introduce the definitions of these 3 

indices and what exactly each of them measures to quantify the clustering quality. 

3.2.2.1 Coverage 

Given a network with an 𝑁 × 𝑁  symmetrical adjacency matrix 𝐴 , and a clustering with 

clusters 𝐶1, … , 𝐶𝐾, where 𝐶𝑘 is a vertex set containing all vertices in cluster 𝑘, coverage is 

defined as 

𝐶𝑜𝑣(𝐶1, … , 𝐶𝐾) = ∑ 𝑊𝑘𝑘

𝐾

𝑘=1
(3.25) 

where 𝑊𝑖𝑗 is the fraction of edges end in cluster 𝐶𝑖 and 𝐶𝑗 over all edges. Coverage index 

measures the fraction of intra-cluster edges. Since I consider a good cluster should be highly 

connected internally and sparsely connected to the rest part of the network, intra-cluster edges 

should weight a large fraction over all edge weight. This index ranges from 0 to 1 and 1 is 

optimal. Coverage is a relatively simple method to evaluate a clustering, however, it has flawed 

in two aspects. Firstly, when all vertices of a network are clustered into a single cluster, coverage 

will be 1, but usually a clustering result like this is trivial. Secondly, it is incapable if I compare 

two clustering results with different numbers of clusters because naturally, this index decreases 

with increased number of clusters.  

3.2.2.2 Modularity 

To fix the problem coverage index has, I can define the modularity of the clustering as 

𝑀𝑜𝑑(𝐶1, … , 𝐶𝐾) = ∑ (𝑊𝑘𝑘 − (∑ 𝑊𝑘𝑗
𝑗

)

2

)
𝐾

𝑘=1
(3.26) 

Modularity measures the actual number of edges inside a cluster minus expected number of 

edges if they are randomly assigned to a network with same degree distribution. Here, if I 
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consider a network 𝐺′ with the same node set as 𝐺 and each node has the same degree while 

the edges are assigned randomly, then (∑ 𝑊𝑘𝑗𝑗 )
2
 represents the expected edge weight between 

node 𝑖 and 𝑗 in 𝐺′. This index fixes the problems mentioned before of coverage index and 

gets rid of the possibility that intra-cluster edges exist by randomness. Modularity ranges from 

0 to 1 and 1 is optimal. 

3.2.2.3 Conductance 

Conductance of a clustering 𝐶1, … , 𝐶𝐾 on network 𝐺 can be defined as 

𝐶𝑜𝑛(𝐶1, … , 𝐶𝐾) = 1 −
1

𝐾
∑

∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∉𝐶𝑘

min(∑ 𝐴𝑖𝑗𝑖∈𝐶𝑘,𝑗∈𝑉 , ∑ 𝐴𝑖𝑗𝑖∉𝐶𝑘,𝑗∈𝑉 )

𝐾

𝑘=1

, (3.27) 

where 𝑉  denotes the set containing all vertices in the network. The second term in the 

conductance equation measures the average possibility of a one-step random walk entering or 

leaving a cluster. Given a network and a starting vertex, I randomly choose a neighbor of the 

starting vertex and move to it, then I again choose a neighbor of current vertex at random and 

move to it. Repeat the process and the sequence of vertices I have is a random walk on the 

network. A good cluster should be difficult for a random walk starting inside a cluster to move 

outside or starting outside a cluster to move inside. Therefore, the larger the conductance is, the 

better the cluster is. Conductance ranges from 0 to 1 and 1 is optimal. For cases with weighted 

edges, I assume a random walk is more likely to go through edges with higher weights. 

 

3.2.3 Competing Methods 

To demonstrate the performance of the JSNMF method that I developed, I compare it to some 

other competing methods also focusing on feature extraction and lowering dimension, including 

symmetrical non-negative matrix factorization (SNMF), spectral clustering (SC) and multi-

view spectral clustering (MSC), which will be introduced in the following sections. 

3.2.3.1 Symmetrical non-negative matrix factorization 

I compare my method with a traditional SNMF method minimizing the objective function 

𝑂𝑆𝑁𝑀𝐹 = ‖𝐴 − 𝐻𝐻𝑇‖𝐹
2 , where 𝐴 is the symmetrical adjacency matrix of a network and 𝐻 
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serves as the feature matrix and cluster indicator. Since this method can only be implemented 

on a single network, I use it to cluster the average network I have. Similar to JSNMF, SNMF 

also requires an updating rule to calculate 𝐻  and make sure 𝑂𝑆𝑁𝑀𝐹  converges. Numerous 

methods have been introduced to do this [92], so here, I adopt a recently developed one [93] 

which guarantees convergence to a stationary points with smaller 𝑂𝑆𝑁𝑀𝐹 value. The updating 

rule is as follow. 

𝐻𝑖𝑗 ← {
√(𝐴 − 𝐻𝐻𝑇)𝑖𝑖, 𝐷 + (𝐻𝑇𝐻)𝑗𝑗 = 0

max(0, 𝐻𝑖𝑗
′ ) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.28) 

where 

𝐻𝑖𝑗
′ = 𝐻𝑖𝑗 −

(𝐻𝐻𝑇𝐻 − 𝐴𝐻)𝑖𝑗

2((𝐻𝑇𝐻)𝑗𝑗 + 𝐵)
 

𝐵 = max (0, −(𝐴 − 𝐻𝐻𝑇)𝑖𝑖 + 𝑋𝑖𝑗
2 + 2𝑋𝑖𝑗 |

(𝐻𝐻𝑇𝐻 − 𝐴𝐻)𝑖𝑗

(𝐻𝑇𝐻)𝑗𝑗
| +

1

2
|
(𝐻𝐻𝑇𝐻 − 𝐴𝐻)𝑖𝑗

(𝐻𝑇𝐻)𝑗𝑗
|

2

) (3.29) 

I use the same strategy on 𝐻 as in JSNMF that I assign a vertex to a cluster where the entry 

value reaches the maximum in the corresponding column. 

3.2.3.2 Spectral clustering 

SC is another method aiming to extract feature matrices from network adjacency matrices with 

lower dimension. The general idea of SC is using eigenvectors of adjacency matrices. If I 

consider ℎ𝑖  to be the feature vector for vertex 𝑖  in the network, then I can have an 

optimization problem minimizing 𝑂𝑆𝐶 =
1

2
∑ 𝐴𝑖𝑗‖ℎ𝑖 − ℎ𝑗‖

2
𝑖𝑗   s.t. 𝑥𝑖

𝑇𝑥𝑗 = {
1,             𝑖 = 𝑗
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

The function is built upon the assumption that if vertex 𝑖 and 𝑗 are close in the network, or in 

another word, they are connected by a highly weighted edge, then their feature vectors should 

not be far away in Euclidean space. It has been proved that 𝑂𝑆𝐶 = 𝑡𝑟(𝐻𝑇𝐿𝐻), where 𝐻 =

[ℎ1 ℎ2 … ℎ𝑛]𝑇 is the cluster indicator and 𝐿 = 𝐷 − 𝐴 is the unnormalized Laplacian matrix 

where 𝐷 is a diagonal matrix with degrees of nodes on its diagonal. Also, previous research 

has proved that if the feature vectors are desired to be 𝑝-dimensional, then 𝐻 should be the 𝑝 

eigenvectors of 𝐿 corresponding to the least 𝑝 eigenvalues. On the feature matrix 𝐻, I can 
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use clustering algorithms such as k-means to identify modules. In this study, I employ an 

algorithm introduced in [94] that discretizes the feature matrix into a binary one. In the 

discretized matrix, each row only has one non-zero element indicating which cluster this vertex 

belongs to. 

3.2.3.3 Multi-view spectral clustering 

This method, introduced in [83], maximizes the objective function  

∑ 𝑡𝑟 ((𝑄(𝑣))
𝑇

𝐿(𝑣)𝑄(𝑣))

𝑛𝑣

𝑣=1

+ ∑ 𝜆𝑣𝑡𝑟 (𝑄(𝑣)(𝑄(𝑣))
𝑇

𝐻𝐻𝑇)

𝑛𝑣

𝑣=1

  

𝑠. 𝑡. (𝑄(𝑣))
𝑇

𝑄(𝑣) = 𝐼, 𝐻𝑇𝐻 = 𝐼, (3.30) 

where 𝐿(𝑣) is the Laplacian matrix of view 𝑣. By solving a standard spectral problem with 

Laplacian 𝐿(𝑣) + 𝐻𝐻𝑇  for 𝑄(𝑣)  and another spectral problem with Laplacian 

∑ 𝜆𝑣𝑣 𝑄(𝑣)(𝑄(𝑣))
𝑇
 for 𝐻, 𝑄(𝑣) and 𝐻 can be iteratively updated and the problem could be 

solved.  

 

3.3 Results and Discussions 

 

Firstly, I implemented my method, JSNMF, on the dataset described in Chapter 2 with different 

settings of parameters and edge weight thresholds to find the best performance. For clustering 

purpose, I only use TD networks for better performances since ASD may alter the modular 

organization of FBNs [95]. According to Equation (3.4), there are two parameters, 𝐾 as the 

number of clusters and 𝛼 as the regularization factor. I try different combinations of 𝐾 and 

𝛼  where 𝐾  ranges from 2 to 10 and 𝛼  ranges from 0. 0001 to 1000. I use modularity to 

measure the performances of clusterings. Although I introduced three indices in the last section 

to evaluate clustering, here I choose modularity as a major one since it is the most widely used. 

In JSNMF and SNMF, the cluster indicator matrices are randomly initiated then updated 

iteratively until convergence, so it is likely that the results are different with different initiations. 

Therefore, for each setting of parameters, I run my programs for JSNMF and SNMF for 40 



26 
 

times, each, then applies results from each running to every individual brain network to 

calculate the indices. Although SNMF is implemented on the average network, I still measure 

its performance on individual networks since I believe the clusterings are supposed to be valid 

on each of them. Indices calculated on each running and each network are averaged to obtain a 

score on a setting of parameters.  

As shown in Figure 3.1a, when I choose 0.35 as the edge weight threshold, the modularity 

reaches the largest when 𝐾 = 4 , i.e., it is most reasonable if I cluster my networks into 4 

modules. I filter the edges because it will amplify the small-worldness of the networks. In the 

following I try several other thresholds under 0.35 because 0.35 is the maximal threshold to 

keep all networks connected. If I zoom in like shown in Figure 3.1b, I can see that when 𝛼 =

1, modularity is the highest among all the curves. This is true if I choose another edge weight 

threshold under 0.35. Therefore, I choose 𝐾 = 4  and 𝛼 = 1  and under this setting of 

parameters, the clustering results are presented in Figure 3.2.  

 

Figure 3.1 Modularity of clusterings obtained with different settings of parameters 
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Figure 3.2 Clustering results of JSNMF.  Only edges weighted larger than 0.8 are shown. I 

choose one from 40 runs that is most similar to all others. 

Next, I compare my method with other competing methods introduced in Section 3.2.3 using 

indices: modularity, conductance and coverage. I measure mean values and standard deviations 

over all individual networks for each method. The reason I compare standard deviation is that 

since I believe different subjects have similar functional modules, the indices of individual 

networks should not disperse much. I set 𝐾 = 4 for each method and calculate the indices 

using different edge weight thresholds.  
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Figure 3.3 Comparison among clustering methods on the mean value of indices over all 

individual networks.  
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Figure 3.4 Comparison among clustering methods on the standard deviation of indices over all 

individual networks.  

The results of mean values are shown in Figure 3.3. I can see that modularity values obtained 

from 4 methods are relatively close, my method still outperforms MS and MSC under all edge 

weight thresholds, and very close to SNMF. Coverage values of JSNMF are higher than other 

method under lower thresholds from 0.05 to 0.2, and still rank the second when the thresholds 

are larger. Although my method has lower modularity than NMF, I still believe my method is 

very promising, because judging from Figure 3.4 showing results of standard deviations, 

JSNMF has lower standard deviation of all three indices than NMF, especially under higher 
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thresholds. Since the three indices measure validity of a clustering on a network, lower standard 

deviation indicates that clustering from JSNMF is more equally valid on every individual 

network, but not biased toward some specific ones.  

Previously, I analyze the validity of the clustering from my method using some external indices. 

Here, I demonstrate that the modules I identified are also valid from a neurological perspective, 

i.e., I will analyze components of each module and explain their exact functions. Since my 

method is randomly initialized and implemented on networks with various sparsity, which could 

yield numbers of different clusterings, I test the similarities of each pair of the clusterings using 

ARI. I find that the clusterings are relatively similar to each other that the lowest ARI value 

among all pairs are 0.91 which is still high considering ARI ranges from -1 to 1. Thus, from all 

clusterings, I choose one that is most similar to all other ones, i.e., if I calculate the mean value 

of ARI of a clustering with all other ones, I select the one with highest mean value to do further 

analyses. 

The red module in Figure 3.2 mostly expands in middle frontal gyrus and frontal pole, partly in 

supramarginal gyrus. It contains several core regions previously identified as parts of frontal-

parietal network (FPN), including intraparietal sulcus, frontal eye field or dorsolateral 

prefrontal cortex [96, 97]. FPN is an attention control system. Frontal eye field and intraparietal 

sulcus are reported to be activated in experiments where visual attentions of subjects are 

frequently drawn to different targets [96]. The dorsolateral prefrontal cortex is also reported 

highly connected to frontal eye field and intraparietal sulcus neurologically. Therefore, I label 

the red module as Frontal-parietal system. 

The green module contains most of ROIs in middle and inferior temporal gyrus, cingulate gyrus, 

hippocampal gyrus, part of frontal gyrus and some other surrounding regions. I label this 

module as default mode network (DMN). Introduced in [98], the reason this system is called 

default mode is that it is more activated when brains are in resting state or mind-wondering. It 

is reported that default mode system has various functions such as emotion and memory [99]. 

Core regions of this system include medial prefrontal cortex, posterior cingulate cortex and 

hippocampal formation which are all contained in the green module in my partitioning [100]. 
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Also, there are reports about participation of temporal lobule in default mode system on certain 

occasions [100].  

The yellow module mainly covers the occipital lobule. I label this module as visual system 

because it is widely reported that occipital lobules are related to visual functions [101, 102, 

103]. And blue module is labeled as somatosensory system. Blue module mostly located at 

parietal lobule. In [104], it is reported parietal lobule, especially its inferior part, is evoked in a 

series of tests where fingers of subjects are continuously stimulated.  

 

3.4 Conclusion 

 

In this chapter, I propose a new network clustering algorithm named JSNMF for identifying 

functional modules in FBNs. I illustrate that my algorithm outperforms other competing 

methods from certain perspectives and show the neurological validity of my modules. Although 

I must admit that the promotion of my method in modularity is rather trivial, in the next chapter, 

I will show that contains more significant alterations in modules I identify than other methods. 
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CHAPTER 4 

STATISTICAL ANALYSIS OF MODULAR ALTERATIONS CAUSED BY ASD 

 

4.1 Introduction 

 

In the last chapter, I implement a new network clustering algorithm on the FBNs and obtain 4 

functional modules. Since the major objective of this research is to develop a feature selection 

strategy that extracting features from a module, I still need to decide from which module I 

extract features. Therefore, in this chapter, I focus on evaluating alterations in modules. If a 

module shows most statistically significant alterations, then I believe features from this module 

are supposed to be more discriminant than others.  

To find the module with most significant alterations, generally, I calculate some modular indices 

which describe the properties of modules from different views and use t-test to see if there are 

differences between ASD and TD group in the mean values of the indices. I also calculate some 

nodal indices and see if significantly altered vertices are enriched in certain modules. In the 

following sections, I will introduce the modular indices and t-test, as well as the results 

indicating from which modules I extract features. 

Statistic tests are widely adopted in many studies about identifying alterations in brain networks 

caused by brain diseases. Most of such studies vary in methodologies but contribute to better 

understanding of pathophysiology of diseases. [29] calculates some indices measuring small-

worldness and regional characteristics of structural brain networks, such as clustering 

coefficient, shortest path length and nodal efficiency, and uses linear regression to find 

significant alterations between AD and control group. They link alterations in structural 

connectivity with abnormal behaviors of AD patients. [28]and [26] obtain similar indices as 

[29]. Focusing on depression and mild cognitive impairment (MCI), [26] uses analysis of 
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variance (ANOVA) for difference test and provides evidence for associations between the two 

diseases. [27] uses t-test on regional connectivity and identifies potential biomarkers 

distinguishing AD subjects. For ASD studies, [22] and [105] identify alterations in long-range 

and short-range functional connections, indicating a deficit information integration system in 

ASD subjects. [106] and [14] use fMRI and DWI data respectively and locate disruptions of 

network organization in several cortical regions related to social cognitive functions. In [25] , 

comparison of voxelwise structural connectivity is made through analysis of covariance 

(ANCOVA). [23] connects strength of global functional connectivity with severity of ASD 

subjects and lowered fusiform-amygdala connectivity may also contribute to social impairment.  

The indices calculated for alteration test in most papers are global or nodal ones, measuring the 

properties of the whole network or a small region. In this chapter, I adopt some modular indices. 

I believe that alterations in functional modules may provide clearer connections between 

cognitive functions and symptoms of ASD. 

In this chapter, I also compare my network clustering algorithm, JSNMF, with other competing 

ones on how significant modular indices altered and how significantly altered vertices enriched 

in modules identified by different algorithms.  

 

4.2 Methods 

 

4.2.1 T-test 

In this chapter, I use two-sample t-test to compare the ASD and TD networks to see if there are 

significant differences between ASD and TD populations. T-test tests if a sample follows a t-

distribution and it is commonly used to determine if a population mean value equals to a 

specified one (one-sample t-test) or if two population has identical mean values. For each node 

in an individual network, I use the metrics introduced above to measure its nodal properties. 

Since this research focuses on modules, I calculate the mean values of metrics over all vertex 

is the same module. As a result, for each metric and each node in each network, I obtain a value 

measuring the property of the module corresponding to the metric. If I assemble the values from 
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the same vertex, corresponding to the same metric, but from different networks, I will obtain 

two samples 𝐽𝑇𝐷  and 𝐽𝐴𝑆𝐷  from TD and ASD networks, representing TD and ASD 

populations, respectively. I assume both populations follow normal distributions. The dataset I 

use contains 42 ASD networks and 37 TD networks, so the two samples size 42 and 37. Here, 

I use two-sample t-test with unequal sample sizes and assume that two populations have unequal 

variance. Given 𝐽𝐴𝑆𝐷 and 𝐽𝑇𝐷, the t-score can be calculated as 

𝑡 =
𝐽�̅�𝑆𝐷 − 𝐽�̅�𝐷

√
𝜎𝐴𝑆𝐷

2

|𝐽𝐴𝑆𝐷|
+

𝜎𝑇𝐷
2

|𝐽𝑇𝐷|

(4.1)
 

where |𝐽| is the sample size, 𝐽 ̅ is the sample mean and 𝜎 is the standard deviation. The t-

score follows a t-distribution with degree of freedom calculated by Welch-Satterthwaite 

equation 

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 =
(

𝜎𝐴𝑆𝐷
2

|𝐽𝐴𝑆𝐷|
+

𝜎𝑇𝐷
2

|𝐽𝑇𝐷|
)

2

(
𝜎𝐴𝑆𝐷

2

|𝐽𝐴𝑆𝐷|
)

2

|𝐽𝐴𝑆𝐷| − 1
+

(
𝜎𝑇𝐷

2

|𝐽𝑇𝐷|
)

2

|𝐽𝑇𝐷| − 1

. (4.2)
 

In the t-test, the null hypothesis is that 𝐽𝐴𝑆𝐷 and 𝐽𝑇𝐷 come from populations with equal means, 

while the alternative hypothesis is that the means are unequal. Given the t-score, the p-value to 

determine whether to reject null hypothesis is the area under density function curve of t-

distribution to the right of 𝑡 and left of −𝑡, since it is a two-sided test. 

 

4.2.2 Graph Theory Based Metrics 

In this chapter, I use some metrics to measure the nodal properties of a vertex in a network, then 

furtherly calculate modular properties based on them. Thus, in this section, I introduce these 

metrics. 

4.2.2.1 Degree centrality 

Given the adjacency matrix 𝐴 of a network with 𝑛 vertices, the degree centrality of vertex 𝑖 

is defined as 
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𝐷𝐶(𝑖) = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

. (4.3) 

Generally, degree centrality is the total number of edges (in unweighted networks) or 

summation of weights of edges (in weighted networks) connected to the vertex. Degree 

centrality is the simplest metric to measure the connectivity of a vertex.  

4.2.2.2 Closeness centrality 

Closeness centrality of 𝑖 is defined as reciprocal of the sum of distance between 𝑖 and any 

other vertices and it is calculated as 

𝐶𝐶(𝑖) =
1

∑ 𝑑(𝑖, 𝑗)𝑗≠𝑖
, (4.4) 

where 𝑑(𝑖, 𝑗) represents the distance between 𝑖 and 𝑗 in the network. The distance is defined 

as the length of shortest path. If vertex 𝑖 is closer to other vertices, it means information from 

𝑖 can easily reach the rest part of the network, assuming information only flows on shortest 

paths. Closeness centrality is also used to measure the efficiency of a vertex. 

4.2.2.3 Clustering coefficient 

Clustering coefficient of a vertex 𝑖 in an unweighted network can be calculated by 

𝐶𝐶(𝑖) =
2𝑇𝑟𝑖𝑖

𝐷𝐶(𝑖)(𝐷𝐶(𝑖) − 1)
(4.5) 

where 𝑇𝑟𝑖𝑖 is the number of triangles attached to vertex 𝑖. A triangle in a network is a structure 

that three vertices are connected to each other. Another equivalent definition of clustering 

coefficient is that number of edges among its neighbors of vertex 𝑖 over number all possible 

edges among them. So clustering coefficient measures how close a vertex and its neighbors 

being a clique, or the degree of a node to which it tends to participate in a cluster. Several 

modifications of Equation (4.5) have been made for weighted networks [107]. In this research, 

I adopt one presented in [108] based on intensity of subnetwork and it is defined as 

𝐶𝐶𝑤(𝑖) =
2

𝐷𝐶(𝑖)(𝐷𝐶(𝑖) − 1)
∑

(𝐴𝑖𝑗𝐴𝑗𝑘𝐴𝑖𝑘)
1
3

max 𝐴
𝑗,𝑘

(4.6) 
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where vertex 𝑗 and 𝑘 are neighbors to 𝑖. I should notice that 𝐷𝐶(𝑖) in weighted clustering 

coefficient is still calculated in unweighted network. ∑
(𝐴𝑖𝑗𝐴𝑗𝑘𝐴𝑖𝑘)

1/3

max 𝐴𝑗,𝑘  is the intensity of the 

triangle to replace 𝑇𝑟𝑖𝑖. Dividing max 𝐴 is to normalize the edge weights so that the product 

will not be too large or too small.  

4.2.2.4 Current-flow closeness centrality 

In closeness centrality, I assume information only flows on the shortest paths, however, spread 

of information onto other paths may also take place in real-world networks. Current-flow 

centralities borrow terms of electric current and voltage from electric circuits as an alternative 

way to measure information flow and distances among vertices. Current-flow closeness 

centrality of vertex 𝑖 is defined as  

𝐶𝐹𝐶𝐶(𝑖) =
1

∑ 𝑉𝑜𝑙(𝑖) − 𝑉𝑜𝑙(𝑗)𝑗≠𝑖
, (4.7) 

where 𝑉𝑜𝑙(𝑖) − 𝑉𝑜𝑙(𝑗) is the voltage difference between 𝑖 and 𝑗. Redefining the distance as 

voltage guarantees the information is not necessarily on the shortest paths. I should notice that 

here, I always consider 𝑖 as the source vertex of the current so 𝑉𝑜𝑙(𝑖) − 𝑉𝑜𝑙(𝑗) will always 

be positive. [109] provides an efficient algorithm to calculate such centrality.  

 

4.2.3 F-score 

Given a set of vertices which show significant difference between ASD and TD networks, I 

may wonder if the modules I identify are enriched with these vertices. If a module contains 

many significant vertices, I can also consider the module as a significant one. To measure the 

enrichment, I here introduce the f-score. Given a vertex set 𝐶 of a module, and the vertex set 

𝑃 that contains all significantly altered vertices in the network, f-score is defined as  

𝑓𝑠 =
2|𝐶 ∩ 𝑃|

|𝐶| + |𝑃|
. (4.8) 

The f-score ranges from 0 and the maximum depends on the actual size of 𝐶 ∩ 𝑃 but it should 

be no larger than 1.  
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4.2 Results and Discussions 

 

I use metrics introduced before to measure nodal properties. I are using weighted networks in 

all calculation. For closeness centrality, I use 1 − Aij to measure the distances of neighboring 

vertices. And for current-flow centrality, edge weights are regarded as flow capacities which 

serves as an upper limit of the amount of a flow that can pass through. 

To identify alterations in ASD networks, I implement t-test on my dataset in two ways, vertex-

wise and module-wise. Vertex-wise t-test means, for each vertex, I can build a sample for ASD 

networks and TD networks and do the t-test to see if there are alterations on this vertex. Module-

wise t-test means I take an average over all vertices in a module to calculate a metric value for 

it, then do the t-test on the ASD and TD samples of the module. The significant level is set to 

0.05 for all t-tests. After the vertex-wise t-test, I use f-score to measure if a module is enriched 

with altered vertices. I believe if a module contains many altered vertices, I can consider it as 

an altered module. Also, I calculate p-values using module-wise t-test on each module to see if 

it shows significant differences with respect to the metrics. 

The results of f-score is shown in Figure 4.1. The 4 modules are obtained from JSNMF. I can 

see that for the 4 metrics I measure, frontal-parietal control system and default mode system 

have higher f-score in most cases, indicating they contain more significantly altered vertices. 

These two modules also show lower p-values compared with other modules according to Figure 

4.2. These results indicate that frontal-parietal control system and default mode system may be 

altered more.  
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Figure 4.1 Comparison of f-scores among 4 modules. 
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Figure 4.2 Comparison of p-values among 4 modules. 

Altered degree centrality and clustering coefficient in default mode system of ASD network 

indicates alterations of functional connectivity inside the module, which is consistent with 

several researches [110, 111, 100, 95]. Such connectivity alterations can be a result of altered 

white matter volume uncovered on subjects with ASD [112, 113]. I also find alterations in 
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closeness centrality and current-flow closeness centrality, which indicates possible alterations 

of long-range connections between default mode system and other modules, since these two 

metrics measure the total distance from a vertex to the rest part of the network. Similar findings 

are also reported in [22] but here I use a different approach considering a whole module 

simultaneously to demonstrate the impact of ASD on the corresponding function. Several core 

functions of the default mode system, including understanding emotions and thoughts of others, 

are reported as major deficits of ASD [114]. Alterations in these indices can be an explanation 

to devastation of functions of default mode system. 

Similar alterations of connectivity are also found in FPN, both intra-module and long-ranged, 

which are supported by several previous findings [115]. Also, visual attention related symptom 

is also reported which may be related to the connectivity loss in this module [116, 117]. Recent 

studies also hypothesize a possible controlling interaction from FPN to DMN [118, 119], which 

explains the co-occurrence of significant alterations in both DMN and FPN. 

Previously, I have demonstrated that it is reasonable that I find reduced metrics value in two 

modules. Although I use a clustering from JSNMF to do that but results of p-values and f-scores 

from other clustering methods are relatively the same. So naturally, I can derive another strategy 

to compare these methods. If DMN identified through a method reach higher f-scores and lower 

p-values, i.e., show more significant alterations, then I can consider the method to be a better 

one. The results are presented in Figure 4.3 and Figure 4.4. 
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Figure 4.3 Comparison of f-scores among 4 clustering methods on DMN 
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Figure 4.4 Comparison of p-values among 4 clustering methods on DMN 

In Figure 4.3 and Figure 4.4, I show that for default mode system and 4 metrics I measure, 

JSNMF can reach highest f-scores and lowest p-values in most cases, especially with smaller 

edge weight thresholds, or very close to the top values. 
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4.4 Conclusion 

 

Generally, there are two objectives for this chapter. One is to identify a module distinguishing 

ASD subjects from TD so that I can extract features from it and the other one is to furtherly 

demonstrate my clustering method is better than others.  

I show in this chapter that DMN and FPN contain more significantly altered vertices and are 

also altered more as whole modules. Thus, I decide to extract features from these two modules 

for diagnosis of ASD. 

In addition, I present comparison among 4 clustering algorithms and find that DMN and FPN 

identified by my method is more discriminant than those by other methods. This indicates that 

my method can identify the most discriminant module so it is better for studying modular 

alterations caused by ASD. 
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CHAPTER 5 

AUTO-CLASSICATION OF ASD WITH MODULAR FEATURES 

 

5.1 Introduction 

 

In clinical practice, diagnosis of ASD mostly relies on interview- or observation-based 

instruments, including Autism Diagnostic Observation Schedule (ADOS) [120] and Autism 

Diagnostic Interview, Revised (ADI-R) [121], which are the most common tools used by 

clinicians. In ADOS, the subjects are asked to perform a series of tasks so that the clinicians 

can observe and evaluate the social and communication behaviors, while ADI-R focuses on 

interviewing parents and caretakers of the subjects. Therefore, the ratings of subjects’ behaviors 

and the final diagnosis highly depend on the clinicians’ personal expertise and caretakers’ 

awareness of the symptoms, which may be biased by many factors. [57] reports that African-

American children are much more likely than white children to be misdiagnosed as other 

diseases, such as conduct disorder, before they receive the diagnosis of ASD or ADHD. [57] 

indicates this is resulted from the often co-occurrence of other mental diseases with ASD and 

the expectation of clinicians towards different group of people having ASD, though no evidence 

shows differences in epidemiology of ASD by race.  

Recent developments in machine learning inspire new approaches to study brain diseases, such 

as AD and schizophrenia. Such studies mostly use MRI data and focus on auto-classification of 

different group of subjects, e.g. ASD or AD vs. control group, or on identification of new 

biomarkers. These studies may vary by source of data, features selected and prediction models 

trained. [122] extracts grey matter volume as features and trains an support vector machine 

(SVM) model and an auto-encoder neural network to classify AD and MCI group. [123] also 

adopts SVM model but trains it with the probability that each voxel in T1-weighted images 

belongs to a tissue class and cortex thickness. [124] builds sparse FBNs from fMRI images and 
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calculates clustering coefficient to study MCI. 

Considering the limitations of clinical diagnostic approaches, auto-classification of ASD can 

provide complementary information for clinicians’ reference. In previous studies, different 

machine learning methods have been implemented on various datasets and yielded relatively 

high accuracy. Some studies directly calculate features from images. [125] uses regional and 

interregional morphological features, such as cortical thickness, subcortical volume and relative 

change in cortical thickness between pairs of regions. Histogram of oriented gradients, which 

describe the spatial gradient among voxels, are adopted in [126]. [127] calculates several 

metrics, e.g., concavity, curvature and metric distortion, measuring folding of cortex. Combined 

with different classifiers, the accuracies usually can reach 80% or higher in these studies. Except 

for morphological features from images, recent studies also extract features from brain 

networks. Most commonly used feature is network connectivity [128, 53, 52, 129, 55], which 

is basically the weight of edge, but other graph theory features are also used such as clustering 

coefficient, characteristic path length, etc. [54, 56]. With recent developments in deep learning, 

artificial neural networks (ANN) appear in ASD studies as both feature selection methods and 

classifiers. [53] uses deep neural network to select discriminant connectivity features from 

FBNs achieve accuracy of 86%. [128] feeds connectivity features to a probabilistic neural 

network for classification and have 90% accuracy. Comparisons among classifiers for ASD 

diagnosis are also made. [129] and [52] compare the performances of several classifiers trained 

with connectivity features, including SVM, logistic regression (LR), linear discriminant 

analysis (LDA), etc. [56] compares several neural networks trained with graph theory features. 

[130] compares SVM and other traditional machine learning methods with probabilistic neural 

network. The results of these researches indicate that the performances of classifiers vary much 

on different datasets and features. 

In studies of auto-classification based on connectivity features, it is quite common to adopt 

feature selection strategies to find discriminant features before using them to train classifiers, 

because the dimension of feature vectors could be very high since it includes all the edge 

weights in it. Such high dimensional feature vectors may lead to overfitting issues, which means 

the prediction model is specified to the training dataset but performs poorly on other ones. Also, 
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less discriminant features may degrade the accuracy of prediction. In addition, a large number 

of features may increase the training time, especially when the classifier is complicated like a 

deep neural network. As mentioned above, some studies use ANN for feature selection [53], 

but also, there are other simpler strategies which ranks all the features and remove low-ranked 

ones [131]. 

In this chapter, I use previously obtained FBN clustering results as a strategy for feature 

selection. I extract features from one module and I show that it would improve the prediction 

performances of several commonly used classifiers. I also show that such a strategy can be 

combined with other feature selection methods for better results. In the following sections, I 

will introduce the whole process for auto-classification of ASD with features from one module 

and then present the classification results. 

 

5.2 Methods 

 

Generally, the pipeline for ASD diagnosis contains 3 stages—feature extraction, training the 

classifiers and validation of models. So, in this section, I introduce how I conduct each stage 

and classifiers I use will also be introduced in detail. In addition, I also give an introduction on 

the method to evaluating my classification results. 

 

5.2.1 Feature Extraction 

In this research, I directly use functional correlations, or the edge weights in FBNs as features. 

For whole-brain feature, I simply vectorize the connectivity matrices of all subjects and obtain 

a 79 × 34716 feature matrix where each row corresponds to a subject. The elements in the 

lower triangles and on the diagonals of connectivity matrices are removed. For DMN and FPN 

features, I firstly extract the subnetworks corresponding to the two modules from the whole 

networks, according to clustering results. Then I vectorize the subnetworks and obtain a 

79 × 3403  and 79 × 1395  feature matrix, respectively. I should notice that any inter-

modular edges are not included. 
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5.2.2 Classifiers 

All the following classifiers are trained with whole-brain, DMN and FPN correlation features, 

separately. 

5.2.2.1 Support vector machine  

Given a training dataset (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) with 𝑛 observations, where 𝑥𝑖 is the feature 

vector and 𝑦𝑖  is the class label equal to either -1 or 1, linear SVM tries to find a linear 

hyperplane in space that divides the dataset into two classes. The hyperplane is supposed to be 

as far as possible to nearest observations in each class. In cases that observations are linearly 

separable, observations in each class should only appear in each side of the hyperplane. The 

hyperplane can be written as 

𝑓𝑆𝑉𝑀(𝑥) = 𝑤 ∙ 𝑥 − 𝑏 = 0, (5.1) 

where 𝑤 and 𝑏 can be determined by solving an optimization problem  

min
1

2
𝑤 ∙ 𝑤𝑇 , 𝑠. 𝑡. 𝑦𝑖𝑓𝑆𝑉𝑀(𝑥𝑖) ≥ 1 (5.2) 

However, in many cases, observations are not linearly separable, so I solve an adjusted 

optimization problem 

min
𝑤,𝑏,𝜉

1

2
𝑤 ∙ 𝑤𝑇 + 𝜙 ∑ 𝜉𝑖

𝑖

,  

𝑠. 𝑡. 𝑦𝑖𝑓𝑆𝑉𝑀(𝑥𝑖) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, (5.3) 

where 𝜉𝑖 is a slack variable equal to max(0, 1 − 𝑦𝑖𝑓𝑆𝑉𝑀(𝑥𝑖)) and 𝜙 is a penalty parameter. 

To solve the optimization problem, I can adopt Lagrangian multiplier to rewrite the objective 

function as 

𝑂𝑆𝑉𝑀 =
1

2
𝑤 ∙ 𝑤𝑇 + 𝜙 ∑ 𝜉𝑖

𝑖

− ∑ 𝛼𝑖(𝑦𝑖𝑓𝑆𝑉𝑀(𝑥𝑖) − 1 + 𝜉𝑖)

𝑖

− ∑ 𝜉𝑖𝜇𝑖

𝑖

, (5.4) 

where 𝛼𝑖  and 𝜇𝑖  are Lagrangian multipliers for 𝑤𝑖  and 𝜉𝑖 , respectively. Solving partial 



48 
 

derivative of 𝑂𝑆𝑉𝑀 with respect to 𝑤, 𝜉𝑖 and 𝑏 equal to zero, I can obtain 

𝑤𝑇 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑖

(5.5) 

∑ 𝛼𝑖𝑦𝑖

𝑖

= 0 (5.6) 

𝛼𝑖 = 𝜙 − 𝜇𝑖 . (5.7) 

Substituting Equation (5.5) and (5.6) in to (5.4), I have 

𝑂𝑆𝑉𝑀 = ∑ 𝛼𝑖

𝑖

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑗𝑖

. (5.8) 

From Equation (5.8), I can furtherly solve for 𝛼𝑖. I should notice that many 𝛼𝑖 would be 0 and 

𝑥𝑖 corresponding to non-zero 𝛼𝑖 are called marginal support vector. Then 𝑏 can be obtained 

by 

𝑏 = 𝑤 ∙ 𝑥𝑖 − 𝑦𝑖 , (5.9) 

where 𝑥𝑖 is a marginal support vector. I implement SVM with MATLAB Machine Learning 

Toolbox. The problem is solved with sequential minimal optimization, which is a stochastic 

gradient descent method updating two variables in the one iteration. 

Linear SVM contains a linear kernel with kernel function 𝑘𝐿(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗. For many cases, 

observations are not linearly separable, so I can try to project them into higher-dimensional 

space so that they became linearly separable. It could be very complicated to find a proper 

transformation. Therefore, I adopt the kernel functions, which are functions of inner product of 

observations, to simplify the problem. Another common kernel is Gaussian kernel defined as 

𝑘𝐺(𝑥𝑖, 𝑥𝑗) = 𝑒−‖𝑥𝑖−𝑥𝑗‖
2

. (5.10) 

If I substitute the Equation (5.10) into (5.8), I obtain the Gaussian kernel SVM classifier. 

Once the SVM is trained, I can test the machine with the testing dataset. So given an observation 

(𝑥𝑡, 𝑦𝑡) with 𝑦𝑡 being unknown, I can simply substitute 𝑥𝑡 into 𝑓𝑆𝑉𝑀(𝑥). Then I can set up 
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a threshold for 𝑓𝑆𝑉𝑀(𝑥𝑡) to determine which class this observation belongs to. For example, 

under the default setting of MATLAB, 𝑦𝑡 = {
−1, 𝑓𝑆𝑉𝑀(𝑥𝑡) < 0

1, 𝑓𝑆𝑉𝑀(𝑥𝑡) ≥ 0
 . By choosing different 

threshold, the performance of the classifier may vary. Thus, I usually test a series of thresholds 

to find the best performance or evaluate the classifier comprehensively. 

5.2.2.2 PSOSVM 

PSOSVM is an SVM based method but with particle swarm optimization (PSO) as a feature 

selection strategy. Inspired by biological activities, PSO optimizes the solution by iteratively 

updating a population of potential solutions, which are regarded as particles [132]. In each 

iteration, the velocities of particles are calculated following certain rules and then used to update 

positions of particles. The iteration ends until certain criterions are met.  

Introduced in [133], the idea of PSO for feature selection is using particles’ positions to 

represent the subsets of features fed to the classifier, which is SVM in my case. If totally I have 

N features, the position of a particle is represented by an N-dimensional binary vector with each 

element corresponding to a feature. For values of elements, “1” means the corresponding 

feature is selected and “0” means not. I first randomly initialize the positions and velocities of 

a swarm of particles. Then I update their velocities according to the following equation 

𝑣𝑖 = 𝑚 ∗ 𝑣𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑖 − 𝑥𝑖) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑖 − 𝑥𝑖) (5.11) 

Where 𝑚 is a weight or inertia factor, 𝑝𝑖 − 𝑥𝑖 the distance between best position and current 

position of particle 𝑖, 𝑔 − 𝑥𝑖 is the distance between global best position and current position 

of 𝑖, and 𝑐1 and 𝑐2 are coefficients I set to 2. The distance of two particles are defined as 

number of different elements in their position vectors. The velocities are rounded to its nearest 

integers toward negative infinity. To decide if a position is good, I use a fitness function defined 

as 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ∗ 𝐴𝑈𝐶(𝐹𝑠𝑒𝑙𝑒𝑐𝑡) + 𝛽 ∗
|𝐹𝑎𝑙𝑙| − |𝐹𝑠𝑒𝑙𝑒𝑐𝑡|

|𝐹𝑎𝑙𝑙|
(5.12) 

Where 𝐴𝑈𝐶(𝐷)  is the area under curve (AUC, which will be furtherly introduced in the 

following section) of an SVM classifier trained with feature subset 𝐹𝑠𝑒𝑙𝑒𝑐𝑡, |𝐹𝑎𝑙𝑙| 𝑎𝑛𝑑 |𝐹𝑠𝑒𝑙𝑒𝑐𝑡| 

are number of all features and selected features, respectively, and 𝛼 and 𝛽 are two parameters 
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weighting the importance of accuracy and number of features and are set to 0.9 and 0.1, 

respectively. The position updating rules are as follows. For each particle, I first calculate the 

distance between it and global best position, 𝑔𝑖 − 𝑥𝑖, and its velocity 𝑣𝑖. If 𝑣𝑖 ≤ 𝑔𝑖 − 𝑥𝑖, the 

I randomly choose 𝑣𝑖 elements in 𝑥𝑖 from all that different from 𝑔𝑖 and flip them. And if 

𝑣𝑖 > 𝑔𝑖 − 𝑥𝑖, I first make 𝑥𝑖 equal to 𝑔𝑖 then randomly choose 𝑣𝑖 − 𝑔𝑖 + 𝑥𝑖 elements in 𝑥𝑖 

and flip them.  

In my experiment, the swarm size is set to 1000. Since the PSO algorithm is randomly initialized, 

I run it for 10 times. PSOSVM is implemented with MATLAB Machine Learning Toolbox. 

5.2.2.3 RFESVM 

The idea of recursive feature elimination (RFE) is ranking the features and eliminating lowest-

ranked one recursively [134]. Consider I have in total 𝑛  observations 𝑥1 … 𝑥𝑛  and their 

corresponding labels 𝑦1 … yn. In SVM, I decide labels of test data using 𝑓𝑆𝑉𝑀(𝑥) = 𝑤 ∙ 𝑥 − 𝑏, 

where 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1  . RFE uses (𝑤𝑓)

2
 , which estimates the effect on the model of 

removing the corresponding feature [135], as the ranking parameter for feature 𝑓 . In this 

research, I choose top 10 features. RFESVM is implemented with Scikit-learn in Python. 

5.2.2.4 Random forest 

RF ensembles a set of decision trees and unknown labels of test data is predicted by voting of 

decision trees. A decision tree is like a flowchart where each node represents a test on the value 

of certain features and branches from the node represent outcomes. To build a single decision 

tree, I use the classification and regression tree algorithm and Gini index as the split criterion. 

The tree is built from root to leaves, where the leaves means a final decision which class the 

observation belongs to. To start with, I calculate Gini index for each feature and each 

cataloguing threshold. The Gini index is defined as 

IGini(𝑓, 𝑡ℎ) = ∑
|𝐶𝑖|

𝑛
(1 − ∑ (

|𝐶𝑖,𝑘|

|𝐶𝑖|
)

2
𝐾

𝑘=1
)

2

𝑖=1

, (5.13) 

where 𝑓 is a feature, 𝑡ℎ is a cataloguing threshold, 𝐾 is the number of classes, 𝐶𝑖 is the set 

of observations catalogued to branch 𝑖  by the threshold 𝑡ℎ , and 𝐶𝑖,𝑘  is a subset of 𝐶𝑖 
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containing observations in class 𝑘. After going through all pairs of features and cataloguing 

thresholds, I choose the one with lowest IGini and set it as the root node. For the two branches 

of the node, if observations in the branch belong to the same class, then the branch reaches the 

leaf, otherwise, I repeat the last step with the rest observations and features until all branches 

reach leaves. 

The idea of random forest is to prevent overfitting issues, which is quite common in 

implementation of decision trees. To achieve this, I randomly choose only two thirds of all 

observations to build each tree. In total, I build 1000 trees. Given a test sample, the forest 

outputs the fractions of trees voting for each class to make the final decision. RF is implemented 

with MATLAB Machine Learning Toolbox. 

5.2.2.5 Linear discriminant analysis 

The basic idea of LDA is to project observations to a lower dimensional space so that classes 

are clearly separated. The whole process to use LDA for classification can be generalized as 

follows. I first calculate the scatter matrix of my training data as 

𝑆 = ∑(𝑥𝑖 − �̅�)

𝑛

𝑖=1

(𝑥𝑖 − �̅�)T, (5.14) 

where �̅� is the mean vector over all observations. Scatter matrix is an estimation of covariance 

matrix. Then I find the eigenvectors of 𝑆  corresponding to largest 𝐾 − 1  eigenvalues and 

make a new matrix 𝐸 with them. Multiplying 𝑥𝑖 with 𝐸, I obtain a new observation 𝑥𝑖
′ with 

lower dimension.  

To do classification, I use Bayes’ rule 

𝑃(𝑦𝑖 = 𝑘|𝑥𝑖
′) =

𝑃(𝑥𝑖
′|𝑦𝑖 = 𝑘)𝑃(𝑦𝑖 = 𝑘)

𝑃(𝑥𝑖
′)

=
𝑃(𝑥𝑖

′|𝑦𝑖 = 𝑘)𝑃(𝑦𝑖 = 𝑘)

∑ 𝑃(𝑥𝑖
′|𝑦𝑖 = 𝑙)𝑃(𝑦𝑖 = 𝑙)𝐾

𝑙=1

(5.15) 

where 𝑃(𝑦𝑖 = 𝑘|𝑥𝑖) is the probability that observation 𝑥𝑖 belongs to class 𝑘. 𝑃(𝑦𝑖 = 𝑘) is 

the fraction of 𝑘-class observations in the whole training data. 𝑃(𝑥𝑖
′|𝑦𝑖 = 𝑘) can be estimated 

with Gaussian distribution that  
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𝑃(𝑥𝑖
′|𝑦𝑖 = 𝑘) = (2𝜋𝜎𝑘

2)−
1
2𝑒

−
(𝑥𝑖

′−𝜇𝑘)
2

2𝜎𝑘
2

, (5.16)
 

where 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation of observations in class 𝑘, respectively. 

So given a testing sample, I obtain a probability for each class. LDA is implemented with Scikit-

learn in Python. 

5.2.2.6 Lasso regularized logistic regression 

In logistic regression, I fit the training data with a sigmoid function. Added with lasso 

regularization, I can obtain the optimization problem 

min
𝑤,𝛾,𝑏

‖𝑤‖1 + 𝛾 ∑ log(𝑒−𝑦𝑖(𝑤∙𝑥𝑖+𝑏) + 1)

𝑛

𝑖=1

, (5.17) 

where 𝛾 is a penalty factor and ‖∙‖1 represents 𝐿1 norm. Optimization (5.17) can be solved 

by the stochastic gradient descent method. LRLR is implemented with Scikit-learn in Python. 

5.2.2.7 k nearest neighbors 

In kNN, the label of a testing sample is decided by the labels of its k nearest neighbors. In my 

study, I measure the Euclidean distance and the number of neighbors is set to the one yielding 

best performance. kNN is implemented with MATLAB Machine Learning Toolbox. 

 

5.2.3 Leave-one-out Cross Validation 

Leave-one-out cross validation (LOOCV) is an extreme case of k-fold validation. In k-fold 

validation, the dataset is randomly divided into k subsets with equal sizes. k-1 subsets are used 

as training data and the rest one for testing. If I go through all the k subsets as testing data, I can 

obtain an average performance of the classifier and every observation is used once for both 

training and testing. The k value may vary depend on actual situation, but 10-fold is commonly 

used.  

I can regard LOOCV as k-fold validation with k equal to the number of all observations. My 

dataset has in total 79 observations, so 78 of them will be used for training and the rest one for 
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testing. I use each observation for testing and obtain 79 prediction results. Then I evaluate the 

performance of the classifier based on the predictions. LOOCV tends to have lower bias but 

higher variance. However, considering the size of the dataset is relatively small, k-fold 

validation may also have high variance, so it is still reasonable to adopt LOOCV here. 

 

5.2.4 Evaluation Indices for Prediction Results 

The performances of classifiers are evaluated by plotting receiver operating characteristic (ROC) 

curves and calculating AUCs. I plot ROC curves with true positive rate (TPR) on the y-axis 

against false positive rate (FPR) on the x-axis. Given the Table (5.1) showing the possible 

outcomes of a classification process, I have 

Table 5.1 A demonstration of all possible outcomes of a prediction 

Number of samples True class 

Positive Negative 

Predicted class Positive True positive False positive 

Negative False negative True negative 

𝑇𝑃𝑅 =
True positive

True positive + False negative
(5.18) 

𝐹𝑃𝑅 =
Frue positive

False positive + True negative
(5.19) 

To draw the ROC curves, I need to calculate TPR and FPR at a series of classification thresholds. 

The thresholds are for the output value of a classifier to decide which class a testing sample 

should belong to. For SVM based classifiers, the threshold ranges from the minimal value it 

can possibly reach to the maximum. And for other classifiers, the output is probabilities an 

testing sample belongs to classes. Thus, I put a threshold on the probability corresponding to 

the first class. If the probability larger than the threshold, the sample goes to the first class, or 

otherwise, it goes to the other class. ROC curves comprehensively show the performance of 

classifiers under different condition. A perfect classifier should have a ROC curve reaching 

point (0,1), which means 100% TPR and 0% FPR. 



54 
 

AUC is the area under the ROC curve and it measures the general performance of a classifier. 

If the AUC is large, it means the ROC curve is close to point (0,1), or at least it partially has 

high TPR or low FPR. In practice, I use trapezoidal integration method to calculate AUCs. 

 

5.3 Results and Discussions 

 

I train each classifier with DMN features, FPN features and whole-brain features, respectively, 

and validate all classifiers with LOOCV. To evaluate the performances, I draw the ROC curves 

and calculate the AUCs of each classifier trained with each type of features.  

The main purpose of feature selection is to reduce the number of features so that the classifiers 

can be trained faster and to select more discriminant features to achieve better performance. In 

most of cases, many features can be redundant or irrelevant, which means these features cannot 

show the differences among groups. Since such features are equally weighted with discriminant 

features, the classifiers may try to find a way to distinguish groups according to these irrelevant 

features, which may yield poor classification performances.  

Table 5.2 shows that the number of features has been significantly reduced by my feature 

selection strategy. As shown in Table 5.3, DMN features achieve higher AUCs for all classifiers 

except for RFESVM. The AUCs of RFESVM are very close and are all relatively high. And in 

actual implementation, RFESVM on DMN features runs much faster than it on whole-brain 

features. AUCs of Gaussian kernel SVM are higher than linear SVM on all three feature sets, 

and PSOSVM and RFESVM also outperform linear SVM and most of other classifiers, 

indicating that a second feature selection steps and kernel tricks have the potential to furtherly 

boost the performances. From Figure 5.1, I can see that DMN features have higher TPR 

especially when FPR is low, which indicates that DMN features may have more potential in 

clinical diagnosis where low misdiagnosis rate is necessary.  
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Figure 5.1 ROCs of different classifiers. 

Even though DMN features achieve relatively good performances, the AUCs of FPN features 
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are not as high as FPN features. In some cases, they are even lower than AUCs of whole-brain 

features. Possibly, this is because correlation features that I use are prone to deliver more local 

properties other than modular ones. As I have shown in Chapter 4, f-score, which measures the 

enrichment of significantly altered vertices in a module, can be also regarded as a measurement 

describing the degree of local alterations. And I can see in Figure 4.1 that, in many cases, FPN 

do not have a higher score than DMN. This indicates, on one hand, if I use some features for 

properties in a modular level, it is possible to improve the classification performances of FPN. 

Table 5.2 Comparison on numbers of features 

 Whole-brain DMN FPN 

Number of features 34716 3486 1378 

 

Table 5.3 AUCs of classifiers trained with different features 

Classifiers Linear 

SVM 

Gaussian 

kernel 

SVM 

PSOSVM RFESVM RF LDA LRLR kNN 

DMN 0.6239 0.6538 0.7215 0.9640 0.5769 0.7754 0.9775 0.6541 

FPN 0.5051 0.4347 0.9136 0.8877 0.4569 0.8144 0.9643 0.5248 

Whole-

brain 

0.4871 0.6252 0.5822 0.9675 0.4678 0.6943 0.9762 0.5347 

 

5.4 Conclusion 

 

In this chapter, I extract correlation features from two modules previously identified and use 

the features to train several common classifiers. I evaluate the prediction results by plotting 

ROC curves and calculating AUCs. I found that AUCs of classifiers trained with DWN features 

are higher than those with whole-brain features. I show the further improvement of 

performances of modular features with another feature selection stage or kernel trick. I also 
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discuss the possible reasons that FPN features cannot have good performances. In general, I 

show that my new feature selection strategy that extracting features from a functional module 

but not from the whole brain is valid, and its potential to be furtherly improved. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

 

In this thesis, I propose a new feature selection strategy for auto-diagnosis of ASD based on 

fMRI data. This strategy is based on building FBNs from fMRI images, network clustering 

algorithm identifying functional modules from FBNs, then statistically analysis finding 

significantly altered modules to extract features. Finally, I train several classifiers with the 

features I obtain in this study and traditionally used whole-brain features, and find that my 

features can yield better classification performances than whole-brain features. 

In Chapter 2, I demonstrate how to build FBNs from fMRI images. I introduce the database I 

obtain the data from and the dataset I use for this study. Then the whole preprocessing pipeline 

of fMRI images are presented, including steps I take and the corresponding tools for each step. 

The whole pipeline includes skull stripping, motion correction, removing outliers that move too 

much, noise regression, spatial smoothing and image registration to standard space. After 

preprocessing, I extract signals from 264 ROIs on the brain cortex and calculate the PCCs 

between any pair of them. The ROIs are referred as vertices in the FBNs and PCCs as weights 

of edges. I obtain an FBN for each subject and the FBNs are represented as 264 × 264 

symmetrical connectivity matrices. 

In Chapter 3, I propose a new NMF based network clustering algorithm named JSNMF. This 

algorithm can factorize multiple symmetrical matrices simultaneously and result in a consensus 

matrix where each row is a lower-dimensional feature vector corresponding to a vertex. I obtain 

four functional modules from the consensus feature matrix. I evaluate the clustering results with 

3 indices—modularity, conductance and coverage. The indices are calculated both on average 
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and individual FBNs. I find that, compared with other competing methods, my method yields 

better clustering results in some terms, though the improvements could be rather moderate. Also, 

I discuss the neurological meanings of each module and link brain functions to the modules.  

To choose from which module I extract features and to demonstrate JSNMF is better from a 

different perspective, in Chapter 4, I calculate some indices measuring modular properties, 

including average centralities and enrichment of significantly altered vertices. Then I do the t-

test on the average centralities between ASD and TD group and calculate the f-score to evaluate 

the enrichment. I show that modules I labeled DMN and FPN are both enriched with 

significantly altered vertices and have low p-value from t-test, thus I decide to extract features 

from these two modules. Also, comparisons are made among clustering algorithms. I find that 

the DMN and FPN module identified by my algorithm have lower p-value and higher f-score. 

Therefore, I believe my algorithm is better than others because it can find more discriminant 

modules and help understand the pathophysiology of ASD. I also combine the results of this 

research with some previous ones to demonstrate the neurological validity of the alterations. 

In Chapter 5, I extract features from DMN, FPN and the whole brain to train several classifiers. 

I use correlation values, i.e., the weights of edges, as the features. The predictions are validated 

by LOOCV. I draw the ROC curves and calculate AUCs to evaluate the performances of 

classifiers. I show that classifiers trained by DMN features achieve better AUCs. And combined 

with a second feature selection step or kernel trick, the performances can be boosted. 

In general, the new feature selection strategy that extracting features from a functional module 

is presented in this study and the I show that, in diagnosing ASD, this strategy can improve 

classification performances compared with cases that use whole-brain features. Such strategy 

can also largely reduce the numbers of features which reduces the training time and potentially 

avoid overfitting issue. In addition, this method is based a new network clustering algorithm 

which also outperforms other competing ones in FBN clustering. 
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6.2 Future works 

 

As I show in Chapter 5, when I implement PSOSVM, RFESVM and Gaussian kernel SVM, I 

obtain better AUCs than ordinary SVM, which indicates that other feature selection methods 

and kernel tricks may boost the classification performance. Therefore, the next step of this work 

can be focused on effectively combining multiple feature selection strategies and kernel 

methods to achieve a better classifier for ASD diagnosis. 

In this study, I try to distinguish ASD subjects from TD group. There are several other 

neurodevelopmental diseases that is closely related to ASD such as ADHD or Asperger 

syndrome which are often studied along with ASD. Thus, another direction of future work is to 

include subjects with such diseases into my study and perform multi-class diagnosis with 

modular features. In addition, my feature selection strategy can be potentially introduced to 

diagnose of other brain diseases, like AD and MCI.  

Thirdly, in Chapter 3, I show the improvements of my clustering algorithm are relatively small. 

But I believe that the NMF-based method can be furtherly modified for better clustering results. 

In Equation (3.4), I only use one regularization term to make the consensus matrix sparse, 

however, I can find several other terms from previous studies to regularize the result, such as a 

graph regularization term introduced in [136].  

Last but not the least, I can also try to interrogate multiple sources of data such as DWI, CT of 

PET for both network clustering and brain disease diagnosis. 
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APPENDIX A 

A LIST OF REGIONS OF INTEREST 

Table 1 A list of ROIs and their coordinates, anatomical and functional labels 

ROI x, y, z coordinates in 

MNI152 space 

Anatomical label Functional label 

1 17 -91 -14 Right Occipital Pole Visual network 

2 8 -91 -7 Right Occipital Pole Visual network 

3 -7 -71 42 Left Precuneous Cortex Default mode network 

4 15 -63 26 Right Precuneous Cortex Visual network 

5 -12 -95 -13 Left Occipital Pole Visual network 

6 26 -79 -16 Right Occipital Fusiform Gyrus Visual network 

7 6 -72 24 Right Cuneal Cortex Visual network 

8 -40 -88 -6 Left Lateral Occipital Cortex 

inferior division 

Visual network 

9 11 -66 42 Right Precuneous Cortex Visual network 

10 -26 -90 3 Left Lateral Occipital Cortex 

inferior division 

Visual network 

11 -25 -98 -12 Left Occipital Pole Visual network 

12 27 -97 -13 Right Occipital Pole Visual network 

13 -24 -91 19 Left Occipital Pole Visual network 

14 37 -81 1 Right Lateral Occipital Cortex 

inferior division 

Visual network 

15 -33 -79 -13 Left Occipital Fusiform Gyrus Visual network 

16 -18 -76 -24 Left Occipital Fusiform Gyrus Visual network 

17 6 -81 6 Right Intracalcarine Cortex Visual network 

18 20 -86 -2 Right Occipital Fusiform Gyrus Visual network 

19 43 -72 28 Right Lateral Occipital Cortex 

superior division 

Visual network 

20 -8 -81 7 Left Intracalcarine Cortex Visual network 

21 24 -87 24 Right Lateral Occipital Cortex 

superior division 

Visual network 

22 -14 -91 31 Left Occipital Pole Visual network 

23 -3 -81 21 Left Cuneal Cortex Visual network 

24 33 -53 44 Right Superior Parietal Lobule Visual network 

25 27 -59 -9 Right Temporal Occipital Fusiform 

Cortex 

Visual network 

26 -28 -79 19 Left Lateral Occipital Cortex 

superior division 

Visual network 

27 29 -77 25 Right Lateral Occipital Cortex 

superior division 

Visual network 

28 -27 -71 37 Left Lateral Occipital Cortex 

superior division 

Visual network 

29 -16 -77 34 Left Cuneal Cortex Visual network 
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30 37 -84 13 Right Lateral Occipital Cortex 

superior division 

Visual network 

31 8 -72 11 Right Intracalcarine Cortex Visual network 

32 43 -78 -12 Right Lateral Occipital Cortex 

inferior division 

Visual network 

33 -42 -60 -9 Left Inferior Temporal Gyrus 

temporooccipital part 

Visual network 

34 15 -87 37 Right Occipital Pole Visual network 

35 27 -37 -13 Right Parahippocampal Gyrus 

posterior division 

Visual network 

36 58 -53 -14 Right Inferior Temporal Gyrus 

temporooccipital part 

Visual network 

37 15 -77 31 Right Cuneal Cortex Visual network 

38 20 -66 2 Right Intracalcarine Cortex Visual network 

39 -28 -58 48 Left Superior Parietal Lobule Visual network 

40 -47 -76 -10 Left Lateral Occipital Cortex 

inferior division 

Visual network 

41 -18 -68 5 Left Intracalcarine Cortex Visual network 

42 46 -47 -17 Right Temporal Occipital Fusiform 

Cortex 

Visual network 

43 42 -66 -8 Right Lateral Occipital Cortex 

inferior division 

Visual network 

44 -47 -51 -21 Left Inferior Temporal Gyrus 

temporooccipital part 

Visual network 

45 18 -47 -10 Right Lingual Gyrus Visual network 

46 -15 -72 -8 Left Lingual Gyrus Visual network 

47 -16 -52 -1 Left Lingual Gyrus Visual network 

48 -42 -74 0 Left Lateral Occipital Cortex 

inferior division 

Visual network 

49 4 -48 51 Right Precuneous Cortex Default mode network 

50 40 -72 14 Right Lateral Occipital Cortex 

inferior division 

Visual network 

51 22 -65 48 Right Lateral Occipital Cortex 

superior division 

Visual network 

52 42 0 47 Right Precentral Gyrus Frontal-parietal 

network 

53 25 -58 60 Right Lateral Occipital Cortex 

superior division 

Visual network 

54 46 -59 4 Right Middle Temporal Gyrus 

temporooccipital part 

Visual network 

55 -38 -27 69 Left Postcentral Gyrus Somatosensory 

network 

56 -38 -15 69 Left Precentral Gyrus Somatosensory 
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network 

57 -23 -30 72 Left Postcentral Gyrus Somatosensory 

network 

58 13 -33 75 Right Postcentral Gyrus Somatosensory 

network 

59 -13 -17 75 Left Precentral Gyrus Somatosensory 

network 

60 -40 -19 54 Left Precentral Gyrus Somatosensory 

network 

61 29 -17 71 Right Precentral Gyrus Somatosensory 

network 

62 2 -28 60 Right Precentral Gyrus Somatosensory 

network 

63 33 -12 -34 Right Temporal Fusiform Cortex 

posterior division 

Default mode network 

64 -16 -46 73 Left Postcentral Gyrus Somatosensory 

network 

65 -7 -33 72 Left Postcentral Gyrus Somatosensory 

network 

66 42 -20 55 Right Postcentral Gyrus Somatosensory 

network 

67 -7 -21 65 Left Precentral Gyrus Somatosensory 

network 

68 -21 -31 61 Left Postcentral Gyrus Somatosensory 

network 

69 66 -8 25 Right Postcentral Gyrus Somatosensory 

network 

70 10 -17 74 Right Precentral Gyrus Somatosensory 

network 

71 -37 -29 -26 Left Temporal Fusiform Cortex 

posterior division 

Somatosensory 

network 

72 20 -29 60 Right Precentral Gyrus Somatosensory 

network 

73 -31 -10 -36 Left Temporal Fusiform Cortex 

anterior division 

Default mode network 

74 10 -46 73 Right Postcentral Gyrus Somatosensory 

network 

75 22 -42 69 Right Superior Parietal Lobule Somatosensory 

network 

76 3 -17 58 Right Precentral Gyrus Somatosensory 

network 

77 50 -20 42 Right Postcentral Gyrus Somatosensory 

network 
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78 38 -17 45 Right Precentral Gyrus Somatosensory 

network 

79 -29 -43 61 Left Superior Parietal Lobule Somatosensory 

network 

80 29 -39 59 Right Superior Parietal Lobule Somatosensory 

network 

81 -16 -65 -20 Left VI Visual network 

82 52 -34 -27 Right Inferior Temporal Gyrus 

posterior division 

Frontal-parietal 

network 

83 22 -58 -23 Right VI Somatosensory 

network 

84 1 -62 -18 Vermis VI Somatosensory 

network 

85 -14 -18 40 Left Precentral Gyrus Somatosensory 

network 

86 -49 -11 35 Left Precentral Gyrus Somatosensory 

network 

87 -53 -10 24 Left Postcentral Gyrus Somatosensory 

network 

88 51 -6 32 Right Precentral Gyrus Somatosensory 

network 

89 -17 -59 64 Left Lateral Occipital Cortex 

superior division 

Somatosensory 

network 

90 -54 -23 43 Left Postcentral Gyrus Somatosensory 

network 

91 43 -23 20 Right Parietal Operculum Cortex Somatosensory 

network 

92 -55 -40 14 Left Planum Temporale Somatosensory 

network 

93 36 -9 14 Right Insular Cortex Somatosensory 

network 

94 -56 -45 -24 Left Inferior Temporal Gyrus 

temporooccipital part 

Default mode network 

95 -45 -32 47 Left Postcentral Gyrus Somatosensory 

network 

96 -38 -33 17 Left Planum Temporale Somatosensory 

network 

97 44 -8 57 Right Precentral Gyrus Somatosensory 

network 

98 -53 -22 23 Left Central Opercular Cortex Somatosensory 

network 

99 0 -15 47 Left Cingulate Gyrus posterior 

division 

Somatosensory 

network 
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100 11 -39 50 Right Precuneous Cortex Somatosensory 

network 

101 -49 -26 5 Left Planum Temporale Somatosensory 

network 

102 -55 -9 12 Left Central Opercular Cortex Somatosensory 

network 

103 -5 -28 -4 Brain-Stem Frontal-parietal 

network 

104 58 -16 7 Right Planum Temporale Somatosensory 

network 

105 32 -26 13 Right Insular Cortex Somatosensory 

network 

106 56 -5 13 Right Central Opercular Cortex Somatosensory 

network 

107 10 -62 61 Right Lateral Occipital Cortex 

superior division 

Visual network 

108 -7 -52 61 Left Precuneous Cortex Somatosensory 

network 

109 10 -2 45 Right Cingulate Gyrus anterior 

division 

Somatosensory 

network 

110 -10 -2 42 Left Juxtapositional Lobule Cortex Somatosensory 

network 

111 -30 -27 12 Left Insular Cortex Somatosensory 

network 

112 59 -17 29 Right Postcentral Gyrus Somatosensory 

network 

113 19 -8 64 Right Superior Frontal Gyrus Somatosensory 

network 

114 -32 -55 -25 Left VI Visual network 

115 -60 -25 14 Left Planum Temporale Somatosensory 

network 

116 -52 -63 5 Left Lateral Occipital Cortex 

inferior division 

Somatosensory 

network 

117 47 -30 49 Right Postcentral Gyrus Somatosensory 

network 

118 6 -24 0 Right Thalamus Frontal-parietal 

network 

119 29 -5 54 Right Precentral Gyrus Somatosensory 

network 

120 -31 -11 0 Left Putamen Somatosensory 

network 

121 -16 -5 71 Left Superior Frontal Gyrus Somatosensory 

network 
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122 -50 -34 26 Left Parietal Operculum Cortex Somatosensory 

network 

123 12 -17 8 Right Thalamus Somatosensory 

network 

124 -10 -18 7 Left Thalamus Somatosensory 

network 

125 31 -14 2 Right Putamen Somatosensory 

network 

126 54 -28 34 Right Supramarginal Gyrus 

anterior division 

Somatosensory 

network 

127 13 -1 70 Right Superior Frontal Gyrus Somatosensory 

network 

128 65 -33 20 Right Superior Temporal Gyrus 

posterior division 

Somatosensory 

network 

129 -33 -46 47 Left Superior Parietal Lobule Visual network 

130 -45 0 9 Left Central Opercular Cortex Somatosensory 

network 

131 -3 2 53 Left Juxtapositional Lobule Cortex Somatosensory 

network 

132 29 1 4 Right Putamen Somatosensory 

network 

133 37 1 -4 Right Insular Cortex Somatosensory 

network 

134 7 8 51 Right Juxtapositional Lobule 

Cortex 

Frontal-parietal 

network 

135 49 8 -1 Right Central Opercular Cortex Frontal-parietal 

network 

136 -51 8 -2 Left Central Opercular Cortex Frontal-parietal 

network 

137 -34 3 4 Left Insular Cortex Frontal-parietal 

network 

138 36 10 1 Right Insular Cortex Frontal-parietal 

network 

139 -1 15 44 Left Paracingulate Gyrus Frontal-parietal 

network 

140 23 10 1 Right Putamen Frontal-parietal 

network 

141 -42 38 21 Left Frontal Pole Frontal-parietal 

network 

142 31 33 26 Right Middle Frontal Gyrus Frontal-parietal 

network 

143 36 22 3 Right Insular Cortex Frontal-parietal 

network 
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144 -32 -1 54 Left Middle Frontal Gyrus Frontal-parietal 

network 

145 -35 20 0 Left Insular Cortex Frontal-parietal 

network 

146 47 10 33 Right Precentral Gyrus Frontal-parietal 

network 

147 15 5 7 Right Pallidum Frontal-parietal 

network 

148 -5 18 34 Left Cingulate Gyrus anterior 

division 

Frontal-parietal 

network 

149 -47 11 23 Left Inferior Frontal Gyrus pars 

opercularis 

Frontal-parietal 

network 

150 10 22 27 Right Cingulate Gyrus anterior 

division 

Frontal-parietal 

network 

151 -39 51 17 Left Frontal Pole Frontal-parietal 

network 

152 38 43 15 Right Frontal Pole Frontal-parietal 

network 

153 -22 7 -5 Left Putamen Frontal-parietal 

network 

154 5 23 37 Right Paracingulate Gyrus Frontal-parietal 

network 

155 37 32 -2 Right Frontal Orbital Cortex Frontal-parietal 

network 

156 -21 41 -20 Left Frontal Pole Frontal-parietal 

network 

157 24 32 -18 Right Frontal Orbital Cortex Frontal-parietal 

network 

158 9 -4 6 Right Thalamus Frontal-parietal 

network 

159 -23 11 64 Left Superior Frontal Gyrus Frontal-parietal 

network 

160 43 49 -2 Right Frontal Pole Frontal-parietal 

network 

161 24 45 -15 Right Frontal Pole Frontal-parietal 

network 

162 49 -42 45 Right Supramarginal Gyrus 

posterior division 

Frontal-parietal 

network 

163 -41 6 33 Left Middle Frontal Gyrus Frontal-parietal 

network 

164 -11 26 25 Left Cingulate Gyrus anterior 

division 

Frontal-parietal 

network 

165 48 25 27 Right Middle Frontal Gyrus Frontal-parietal 
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network 

166 48 22 10 Right Inferior Frontal Gyrus pars 

triangularis 

Frontal-parietal 

network 

167 34 16 -8 Right Insular Cortex Frontal-parietal 

network 

168 -15 4 8 Left Caudate Frontal-parietal 

network 

169 -42 25 30 Left Middle Frontal Gyrus Frontal-parietal 

network 

170 34 54 -13 Right Frontal Pole Frontal-parietal 

network 

171 31 56 14 Right Frontal Pole Frontal-parietal 

network 

172 26 50 27 Right Frontal Pole Frontal-parietal 

network 

173 0 30 27 Left Cingulate Gyrus anterior 

division 

Frontal-parietal 

network 

174 -42 45 -2 Left Frontal Pole Frontal-parietal 

network 

175 55 -45 37 Right Supramarginal Gyrus 

posterior division 

Frontal-parietal 

network 

176 -3 26 44 Left Paracingulate Gyrus Frontal-parietal 

network 

177 -34 55 4 Left Frontal Pole Frontal-parietal 

network 

178 -28 52 21 Left Frontal Pole Frontal-parietal 

network 

179 12 36 20 Right Cingulate Gyrus anterior 

division 

Default mode network 

180 -2 38 36 Left Paracingulate Gyrus Default mode network 

181 -53 -49 43 Left Supramarginal Gyrus 

posterior division 

Default mode network 

182 40 18 40 Right Middle Frontal Gyrus Default mode network 

183 -3 42 16 Left Cingulate Gyrus anterior 

division 

Default mode network 

184 44 -53 47 Right Angular Gyrus Default mode network 

185 -42 -55 45 Left Angular Gyrus Default mode network 

186 34 38 -12 Right Frontal Pole Frontal-parietal 

network 

187 32 14 56 Right Middle Frontal Gyrus Frontal-parietal 

network 

188 -44 2 46 Left Precentral Gyrus Default mode network 

189 -10 11 67 Left Superior Frontal Gyrus Default mode network 
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190 27 16 -17 Right Frontal Orbital Cortex Default mode network 

191 55 -31 -17 Right Inferior Temporal Gyrus 

posterior division 

Default mode network 

192 -49 25 -1 Left Frontal Operculum Cortex Default mode network 

193 53 33 1 Right Inferior Frontal Gyrus pars 

triangularis 

Frontal-parietal 

network 

194 -20 45 39 Left Frontal Pole Default mode network 

195 -11 45 8 Left Cingulate Gyrus anterior 

division 

Default mode network 

196 -2 -13 12 Left Thalamus Default mode network 

197 22 39 39 Right Frontal Pole Default mode network 

198 65 -31 -9 Right Middle Temporal Gyrus 

posterior division 

Default mode network 

199 8 42 -5 Right Paracingulate Gyrus Default mode network 

200 49 35 -12 Right Frontal Pole Default mode network 

201 54 -43 22 Right Angular Gyrus Frontal-parietal 

network 

202 2 -24 30 Right Cingulate Gyrus posterior 

division 

Default mode network 

203 37 -65 40 Right Lateral Occipital Cortex 

superior division 

Default mode network 

204 -8 48 23 Left Paracingulate Gyrus Default mode network 

205 -2 -37 44 Left Cingulate Gyrus posterior 

division 

Default mode network 

206 -31 19 -19 Left Frontal Orbital Cortex Default mode network 

207 -16 29 53 Left Superior Frontal Gyrus Default mode network 

208 13 30 59 Right Superior Frontal Gyrus Default mode network 

209 9 54 3 Right Paracingulate Gyrus Default mode network 

210 -7 51 -1 Left Paracingulate Gyrus Default mode network 

211 56 -46 11 Right Middle Temporal Gyrus 

temporooccipital part 

Somatosensory 

network 

212 -20 64 19 Left Frontal Pole Default mode network 

213 65 -24 -19 Right Middle Temporal Gyrus 

posterior division 

Default mode network 

214 -35 20 51 Left Middle Frontal Gyrus Default mode network 

215 35 -67 -34 Right Crus I Default mode network 

216 23 33 48 Right Superior Frontal Gyrus Default mode network 

217 6 54 16 Right Paracingulate Gyrus Default mode network 

218 51 -29 -4 Right Middle Temporal Gyrus 

posterior division 

Default mode network 

219 13 55 38 Right Frontal Pole Default mode network 

220 -46 31 -13 Left Frontal Orbital Cortex Default mode network 

221 52 -33 8 Right Superior Temporal Gyrus Somatosensory 
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posterior division network 

222 47 -50 29 Right Angular Gyrus Default mode network 

223 -56 -50 10 Left Middle Temporal Gyrus 

temporooccipital part 

Somatosensory 

network 

224 52 -59 36 Right Lateral Occipital Cortex 

superior division 

Default mode network 

225 -68 -41 -5 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

226 -58 -30 -4 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

227 -10 39 52 Left Superior Frontal Gyrus Default mode network 

228 6 64 22 Right Frontal Pole Default mode network 

229 -39 -75 44 Left Lateral Occipital Cortex 

superior division 

Default mode network 

230 -2 -35 31 Left Cingulate Gyrus posterior 

division 

Default mode network 

231 -18 63 -9 Left Frontal Pole Default mode network 

232 8 41 -24 Right Frontal Medial Cortex Default mode network 

233 -49 -42 1 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

234 -41 -75 26 Left Lateral Occipital Cortex 

superior division 

Default mode network 

235 17 -80 -34 Right Crus II Default mode network 

236 -58 -26 -15 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

237 -10 55 39 Left Frontal Pole Default mode network 

238 -3 44 -9 Left Paracingulate Gyrus Default mode network 

239 8 48 -15 Right Frontal Medial Cortex Default mode network 

240 -44 -65 35 Left Lateral Occipital Cortex 

superior division 

Default mode network 

241 -68 -23 -16 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

242 28 -77 -32 Right Crus I Default mode network 

243 -34 -38 -16 Left Temporal Fusiform Cortex 

posterior division 

Default mode network 

244 6 67 -4 Right Frontal Pole Default mode network 

245 -46 -61 21 Left Lateral Occipital Cortex 

superior division 

Default mode network 

246 -13 -40 1 Left Hippocampus Default mode network 

247 52 7 -30 Right Temporal Pole Default mode network 

248 49 -3 -38 Right Inferior Temporal Gyrus 

anterior division 

Default mode network 

249 17 -28 -17 Right Parahippocampal Gyrus Default mode network 
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posterior division 

250 65 -12 -19 Right Middle Temporal Gyrus 

posterior division 

Default mode network 

251 52 -2 -16 Right Superior Temporal Gyrus 

anterior division 

Default mode network 

252 46 16 -30 Right Temporal Pole Default mode network 

253 6 -59 35 Right Precuneous Cortex Default mode network 

254 -26 -40 -8 Left Lingual Gyrus Default mode network 

255 8 -48 31 Right Cingulate Gyrus posterior 

division 

Default mode network 

256 -3 -49 13 Left Cingulate Gyrus posterior 

division 

Default mode network 

257 -21 -22 -20 Left Parahippocampal Gyrus 

anterior division 

Default mode network 

258 -50 -7 -39 Left Inferior Temporal Gyrus 

anterior division 

Default mode network 

259 -53 3 -27 Left Middle Temporal Gyrus 

anterior division 

Default mode network 

260 11 -54 17 Right Precuneous Cortex Default mode network 

261 -56 -13 -10 Left Middle Temporal Gyrus 

posterior division 

Default mode network 

262 -7 -55 27 Left Precuneous Cortex Default mode network 

263 -11 -56 16 Left Precuneous Cortex Default mode network 

264 -44 12 -34 Left Temporal Pole Default mode network 
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APPENDIX B 

PROGRAMS 

Programs for Network Clustering 

 

JSNMF in MATLAB 

 

function H=MF4CNDA(A, k, errs, alpha) 

  

% A is a 3-dimentional matrix containing all the individual networks. 

% k is the number of clusters desired 

% alpha is the regularization factor 

  

n=size(A,3); % the number of samples 

m=size(A,1); % the dimension of similarity matrix of each sample; 

H=0.01*abs(randn(m, k)); %initialization 

S=0.01*abs(randn(k,k,n)); 

 

for i=1:n 

    S(:,:,i)=S(:,:,i)+S(:,:,i)'; 

end 

Serr10=10000; 

err0=1; 

while err0>errs 

     H1=H'*H; 

     NU=zeros(m,k); 

     DU=zeros(m,k); 

     for i=1:n 

         NUS = H'*A(:,:,i)*H; 

         DUS = H1*S(:,:,i)*H1; 

         S(:,:,i)=S(:,:,i).*(NUS./DUS); 

         NU=NU+A(:,:,i)*H*S(:,:,i); 

         DU=DU+H*S(:,:,i)*H1*S(:,:,i); 

     end 

     H=H.*(NU./(DU+alpha)).^(1/4); 

     Serr1=0; 

     for i=1:n 

         Serr1 = Serr1+ (norm(A(:,:,i)-H*S(:,:,i)*H', 'fro'))^2; 

     end 

     Serr1=Serr1+alpha*sum(sum(H)); 

    err0=abs(Serr10-Serr1)/Serr10; %calculate the error 

    Serr10=Serr1; 

end 

          

SNMF in MATLAB 
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function [iter,OBJ, U] = SNMFWU(A,U,tol,maxiter) 

  

% A is the connectivity matrix and U is the feature matrix initilized 

% in the main script. 

  

n=length(A(1,:)); 

r=length(U(1,:)); 

err0=tol; 

  

OBJinit=0.5*sum(sum((A-U*U').^2)); 

  

for iter=1:maxiter, 

    for k=1:r 

        NU=U(:,k)'*U(:,k); 

        for i=1:n 

            Uik0=U(i,k); 

            bi=A(i,i)-U(i,:)*U(i,:)'; 

            if(NU<err0 & bi>=0) 

                U(i,k)=sqrt(bi); 

            else 

                gik=(U*U(i,:)'-A(:,i))'*U(:,k); 

                d=abs(gik)/NU; 

                Dik=max(0, -bi+U(i,k)^2+2*U(i,k)*d+d^2/2); 

                DD=2*(NU+Dik); 

                Uik1=U(i,k)-gik/DD; 

                U(i,k)=max(0,Uik1);  

            end 

            NU=NU-Uik0^2+U(i,k)^2;    

        end 

    end 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

   OBJ=0.5*sum(sum((A-U*U').^2)); 

   err=abs(OBJinit-OBJ)/OBJ; 

   OBJinit=OBJ;  

   if (err < err0) 

     break; 

   end      

end 

 

SC in MATLAB 

 

function [group, eigengap] = SpectralClustering(W, NUMC) 
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% calculate degree matrix 

degs = sum(W, 2); 

D    = sparse(1:size(W, 1), 1:size(W, 2), degs); 

  

% compute unnormalized Laplacian 

L = D - W; 

k = max(NUMC); 

% compute normalized Laplacian if needed 

  

% avoid dividing by zero 

degs(degs == 0) = eps; 

% calculate D^(-1/2) 

D = spdiags(1./(degs.^0.5), 0, size(D, 1), size(D, 2)); 

% calculate normalized Laplacian 

L = D * L * D; 

  

% compute the eigenvectors corresponding to the k smallest 

% eigenvalues 

[U, eigenvalue] = eigs(L, k, eps); 

[a,b] = sort(diag(eigenvalue),'ascend'); 

eigenvalue = eigenvalue(:,b); 

U = U(:,b); 

eigengap = abs(diff(diag(eigenvalue))); 

U = U(:,1:k); 

% in case of the Jordan-Weiss algorithm, I need to normalize 

% the eigenvectors row-wise 

%U = bsxfun(@rdivide, U, sqrt(sum(U.^2, 2))); 

%U = U./repmat(sqrt(sum(U.^2,2)),1,size(U,2)); 

  

flag =0; 

for ck = NUMC 

    Cindex = find(NUMC==ck); 

    UU = U(:,1:ck); 

    UU = UU./repmat(sqrt(sum(UU.^2,2)),1,size(UU,2)); 

    [EigenvectorsDiscrete]=discretisation(UU); 

    [~,temp] = max(EigenvectorsDiscrete,[],2); 

%     for i = 1 : ck 

%         initcenter(i,:) = mean(UU(temp==i,:)); 

%     end 

     

    Cluster{Cindex} = temp; 

end 

  

if length(NUMC)==1 
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    group=Cluster{1}; 

else 

    group = Cluster; 

end 

  

end 

 

function [EigenvectorsDiscrete,EigenVectors]=discretisation(EigenVectors) 

%  

% EigenvectorsDiscrete=discretisation(EigenVectors) 

%  

% Input: EigenVectors = continuous Ncut vector, size = ndata x nbEigenvectors  

% Output EigenvectorsDiscrete = discrete Ncut vector, size = ndata x nbEigenvectors 

% 

% Timothee Cour, Stella Yu, Jianbo Shi, 2004 

  

[n,k]=size(EigenVectors); 

  

vm = sqrt(sum(EigenVectors.*EigenVectors,2)); 

EigenVectors = EigenVectors./repmat(vm+eps,1,k); 

  

R=zeros(k); 

% R(:,1)=EigenVectors(1+round(rand(1)*(n-1)),:)'; 

 R(:,1)=EigenVectors(round(n/2),:)'; 

%R(:,1)=EigenVectors(n,:)'; 

c=zeros(n,1); 

for j=2:k 

    c=c+abs(EigenVectors*R(:,j-1)); 

    [minimum,i]=min(c); 

    R(:,j)=EigenVectors(i,:)'; 

end 

  

lastObjectiveValue=0; 

exitLoop=0; 

nbIterationsDiscretisation = 0; 

nbIterationsDiscretisationMax = 20;%voir 

while exitLoop== 0  

    nbIterationsDiscretisation = nbIterationsDiscretisation + 1 ;    

    EigenvectorsDiscrete = discretisationEigenVectorData(EigenVectors*R); 

    [U,S,V] = svd(EigenvectorsDiscrete'*EigenVectors+eps,0);     

    NcutValue=2*(n-trace(S)); 

     

    if abs(NcutValue-lastObjectiveValue) < eps | nbIterationsDiscretisation > 

nbIterationsDiscretisationMax 
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        exitLoop=1; 

    else 

        lastObjectiveValue = NcutValue; 

        R=V*U'; 

    end 

end 

 

function Y = discretisationEigenVectorData(EigenVector) 

% Y = discretisationEigenVectorData(EigenVector) 

% 

% discretizes previously rotated eigenvectors in discretisation 

% Timothee Cour, Stella Yu, Jianbo Shi, 2004 

  

[n,k]=size(EigenVector); 

  

  

[Maximum,J]=max(EigenVector'); 

  

Y=sparse(1:n,J',1,n,k);     

% Y = J'; 

 

MSC in MATLAB 

 

function [U,O_cur]=MultiCoreguSC_CB(L,U,K,lambda) 

  

n=length(L); 

L_m=zeros(size(L{1})); 

% main circle 

    for v=1:n 

        L_m=L_m+lambda(v)*U{v}*U{v}'; 

    end 

     

    [Us,V]=eigs(L_m,K); 

     

    for v=1:n 

        [U{v},V]=eigs(L{v}+lambda(v)*Us*Us',K); 

    end 

    O_cur=Us; 

 

Clustering Evaluation Indices in MATLAB 

 

function [mdul,cov,cond]=NetMetrics(A,c) 

  

% A is a network and c is the clusteirng to be evaluated 
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Nn=length(A(:,1,1)); 

Nc=max(c); 

  

% Calcuate coverage 

num=0; 

den=0; 

for i=1:Nn 

    for j=1:Nn 

        if c(i)==c(j) 

            num=num+A(i,j); 

        end 

        den=den+A(i,j); 

    end 

end 

cov=num/den; 

  

% Calculate modularity 

W=A/sum(sum(A)); 

Vol=zeros(Nc,1); 

WW=zeros(Nc,Nc); 

for i=1:Nn, 

    Vol(c(i)) = Vol(c(i))+sum(W(i,:)); 

    for j=1:Nn, 

        WW(c(i), c(j))= WW(c(i), c(j)) + W(i,j); 

    end 

end 

mdul=trace(WW)-Vol'*Vol; 

  

%Calculate conductance 

A=triu(A); 

for cc=1:Nc 

    num=0; 

    aS=0; 

    aS_bar=0; 

    for i=1:Nn 

        for j=1:Nn 

            if c(i)==cc 

                aS=aS+A(i,j); 

                if c(i)~=c(j) 

                    num=num+A(i,j); 

                end 

            else 

                aS_bar=aS_bar+A(i,j); 
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            end 

        end 

    end 

    phiS(cc)=num/min(aS,aS_bar); 

end 

cond=1-mean(phiS); 

 

Classification Algorithms 

 

PSOSVM 

 

% Parameter settings for PSO 

  

m=1000; 

train=imconn{1,4}; 

S=length(train(1,:)); %total number of features 

VelMax=floor(S/3); %max velocity 

VelMin=1; %min velocity 

MaxIt=50; %Max iteration 

weight=1.4; %Initial inertia weight 

c1=2; %acceleration terms for gbest and pbest 

c2=2;  

alpha=0.9; %weights in cost function 

beta=1-alpha; 

  

% Initialization 

  

empty_particle.Position=[]; 

empty_particle.Cost=[]; 

empty_particle.TP=[]; 

empty_particle.FP=[]; 

empty_particle.Velocity=[]; 

empty_particle.Best.Position=[]; 

empty_particle.Best.Cost=[]; 

empty_particle.Best.TP=[]; 

empty_particle.Best.FP=[]; 

  

particle=repmat(empty_particle,m,1); 

  

BestSol.Cost=0; 

  

for i=1:m 

     

    % Initialize Position 
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    particle(i).Position=randi([0 1],S,1); 

     

    % Initialize Velocity 

    particle(i).Velocity=randi([0 VelMax],1,1); 

     

    % Evaluation 

    [particle(i).Cost, particle(i).TP, 

particle(i).FP]=CostFunction(particle(i).Position,train,alpha,beta); 

     

    % Update Personal Best 

    particle(i).Best.Position=particle(i).Position; 

    particle(i).Best.Cost=particle(i).Cost; 

    particle(i).Best.TP=particle(i).TP; 

    particle(i).Best.FP=particle(i).FP; 

     

    % Update Global Best 

    if particle(i).Best.Cost>BestSol.Cost 

         

        BestSol=particle(i).Best; 

         

    end 

     

end 

  

  

% nn=1; 

% PSO Main Loop 

  

for it=1:MaxIt 

     

    weight=(weight-0.4)*(MaxIt-it)/MaxIt+0.4; %recalculate the weight for each iteration, 

following Wang et al. 2007 

     

    for i=1:m 

         

        % Calculate distances 

        pbestdiff=particle(i).Best.Position-particle(i).Position; 

        gbestdiff=BestSol.Position-particle(i).Position; 

        pbestdist=length(find(pbestdiff==1))-length(find(pbestdiff==-1)); 

        gbestdist=length(find(gbestdiff==1))-length(find(gbestdiff==-1)); 

         

        % Update Velocity 

        particle(i).Velocity = floor(weight*particle(i).Velocity ... 

            + c1*rand(1,1)*pbestdist + c2*rand(1,1)*gbestdist); 
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        % Apply Velocity Limits 

        particle(i).Velocity = max(particle(i).Velocity,VelMin); 

        particle(i).Velocity = min(particle(i).Velocity,VelMax); 

         

        % Update Position 

        xg=length(find(gbestdiff~=0)); 

        if particle(i).Velocity<=xg 

             

            ChangedBitsIndex=randsample(find(gbestdiff~=0), particle(i).Velocity); 

            for j=1:length(ChangedBitsIndex) 

  

                

particle(i).Position(ChangedBitsIndex(j))=BestSol.Position(ChangedBitsIndex(j)); 

               

            end 

             

        else 

             

            particle(i).Position=BestSol.Position; 

            ChangedBitsIndex=randsample(find(gbestdiff==0), particle(i).Velocity); 

            for j=1:length(ChangedBitsIndex) 

  

                particle(i).Position(ChangedBitsIndex(j))=-

(BestSol.Position(ChangedBitsIndex(j)))+1; 

             

            end 

  

        end 

                     

        % Evaluation 

        [particle(i).Cost, particle(i).TP, particle(i).FP] = 

CostFunction(particle(i).Position,train,alpha,beta); 

%         nn=nn+1; 

         

        % Update Personal Best 

        if particle(i).Cost>particle(i).Best.Cost 

             

            particle(i).Best.Position=particle(i).Position; 

            particle(i).Best.Cost=particle(i).Cost; 

            particle(i).Best.TP=particle(i).TP; 

            particle(i).Best.FP=particle(i).FP; 

             

            % Update Global Best 
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            if particle(i).Best.Cost>BestSol.Cost 

                 

                BestSol=particle(i).Best; 

                 

            end 

             

        end 

         

    end 

     

    BestCost(it)=BestSol.Cost; 

     

    if it>1 && abs(BestCost(it)-BestCost(it-1))/BestCost(it-1)<=0.000001 

        break; 

    end 

     

end 

 

function [Cost, TP, FP]=CostFunction(Position,train_orig,alpha,beta) 

  

C=length(train_orig(1,:)); 

train_orig=train_orig(:,find(Position==1)); 

  

%leave one out 

% This part is in the main script and the same for each classifier. 

% I can easily change svmtrain to other classifier training functions such 

% as RF, kNN, etc. Some classifiers are implemented in Python, but the 

% structure of their programs are also similar. 

for s=1:79 

    train=train_orig; 

    test=train(s,:); 

    train(s,:)=[]; 

    if s<=37 

        group=cat(2,zeros(1,36),ones(1,42)); 

    else 

        group=cat(2,zeros(1,37),ones(1,41)); 

    end 

    svmmodel = svmtrain(train,group,'kernel_function','linear','method','LS'); 

    testscale=(test+svmmodel.ScaleData.shift).*svmmodel.ScaleData.scaleFactor; 

    

svmvalue(s)=sum(svmmodel.SupportVectors*testscale'.*svmmodel.Alpha)+svmmodel.Bias;     

     

end 

maxthld=max(svmvalue)+eps; 
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minthld=min(svmvalue)-eps; 

svmthreshold=minthld:(maxthld-minthld)/50:maxthld; 

for t=1:length(svmthreshold) 

    for s=1:79 

        prediction(t,s)=(svmvalue(s)<svmthreshold(t)); 

  

    end 

    TP(t)=length(find(prediction(t,38:79)==1))/42; 

    FP(t)=length(find(prediction(t,1:37)==1))/37; 

%     TN(t)=length(find(prediction(t,1:37)==0))/79; 

     

end 

AUC=trapz(FP,TP); 

Cost=alpha*AUC+beta*(C-length(find(Position==1)))/C; 


