5 research outputs found

    Partially Punctual Metric Temporal Logic is Decidable

    Full text link
    Metric Temporal Logic \mathsf{MTL}[\until_I,\since_I] is one of the most studied real time logics. It exhibits considerable diversity in expressiveness and decidability properties based on the permitted set of modalities and the nature of time interval constraints II. Henzinger et al., in their seminal paper showed that the non-punctual fragment of MTL\mathsf{MTL} called MITL\mathsf{MITL} is decidable. In this paper, we sharpen this decidability result by showing that the partially punctual fragment of MTL\mathsf{MTL} (denoted PMTL\mathsf{PMTL}) is decidable over strictly monotonic finite point wise time. In this fragment, we allow either punctual future modalities, or punctual past modalities, but never both together. We give two satisfiability preserving reductions from PMTL\mathsf{PMTL} to the decidable logic \mathsf{MTL}[\until_I]. The first reduction uses simple projections, while the second reduction uses a novel technique of temporal projections with oversampling. We study the trade-off between the two reductions: while the second reduction allows the introduction of extra action points in the underlying model, the equisatisfiable \mathsf{MTL}[\until_I] formula obtained is exponentially succinct than the one obtained via the first reduction, where no oversampling of the underlying model is needed. We also show that PMTL\mathsf{PMTL} is strictly more expressive than the fragments \mathsf{MTL}[\until_I,\since] and \mathsf{MTL}[\until,\since_I]

    Generalizing Non-Punctuality for Timed Temporal Logic with Freeze Quantifiers

    Full text link
    Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time extensions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is undecidable when both the future U and the past S modalities are used. In a classical result, the satisfiability checking for MITL[U,S], a non punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. Given that this notion of non punctuality does not recover decidability in the case of TPTL[U,S], we propose a generalization of non punctuality called \emph{non adjacency} for TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While non adjacent 1-TPTL[U,S] appears to be be a very small fragment, it is strictly more expressive than MITL. As our main result, we show that the satisfiability checking problem for non adjacent 1-TPTL[U,S] is decidable with EXPSPACE complete complexity

    21st International Symposium on Temporal Representation and Reasoning, TIME 2014, Verona, Italy, September 8-10, 2014

    No full text
    The proceedings contain 18 papers. The topics discussed include: a tractable generalization of simple temporal networks and its relation to mean payoff games; sound and complete algorithms for checking the dynamic controllability of temporal networks with uncertainty, disjunction and observation; a formal account of planning with flexible timelines; metric propositional neighborhood logic with an equivalence relation; checking interval properties of computations; approximate interval-based temporal dependencies: the complexity landscape; a framework for managing temporal dimensions in archaeological data; lean index structures for snapshot access in transaction-time databases; high-level operations for creation and maintenance of temporal and conventional schema in the tauXSchema framework; summarizability in multiversion data warehouse; fairness with EXPTIME bundled CTL tableau; and partially punctual metric temporal logic is decidable
    corecore