1,726 research outputs found

    Chain Decomposition Theorems for Ordered Sets (and Other Musings)

    Full text link
    A brief introduction to the theory of ordered sets and lattice theory is given. To illustrate proof techniques in the theory of ordered sets, a generalization of a conjecture of Daykin and Daykin, concerning the structure of posets that can be partitioned into chains in a ``strong'' way, is proved. The result is motivated by a conjecture of Graham's concerning probability correlation inequalities for linear extensions of finite posets

    Chains, Antichains, and Complements in Infinite Partition Lattices

    Full text link
    We consider the partition lattice Πκ\Pi_\kappa on any set of transfinite cardinality κ\kappa and properties of Πκ\Pi_\kappa whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is always exactly κ\kappa; (II) there are maximal chains in Πκ\Pi_\kappa of cardinality >κ> \kappa; (III) if, for every cardinal λ<κ\lambda < \kappa, we have 2λ<2κ2^{\lambda} < 2^\kappa, there exists a maximal chain of cardinality <2κ< 2^{\kappa} (but κ\ge \kappa) in Π2κ\Pi_{2^\kappa}; (IV) every non-trivial maximal antichain in Πκ\Pi_\kappa has cardinality between κ\kappa and 2κ2^{\kappa}, and these bounds are realized. Moreover we can construct maximal antichains of cardinality max(κ,2λ)\max(\kappa, 2^{\lambda}) for any λκ\lambda \le \kappa; (V) all cardinals of the form κλ\kappa^\lambda with 0λκ0 \le \lambda \le \kappa occur as the number of complements to some partition PΠκ\mathcal{P} \in \Pi_\kappa, and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition; (VI) Under the Generalized Continuum Hypothesis, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterization.Comment: 24 pages, 2 figures. Submitted to Algebra Universalis on 27/11/201

    Zeno's Paradoxes. A Cardinal Problem 1. On Zenonian Plurality

    Get PDF
    In this paper the claim that Zeno's paradoxes have been solved is contested. Although no one has ever touched Zeno without refuting him (Whitehead), it will be our aim to show that, whatever it was that was refuted, it was certainly not Zeno. The paper is organised in two parts. In the first part we will demonstrate that upon direct analysis of the Greek sources, an underlying structure common to both the Paradoxes of Plurality and the Paradoxes of Motion can be exposed. This structure bears on a correct - Zenonian - interpretation of the concept of division through and through. The key feature, generally overlooked but essential to a correct understanding of all his arguments, is that they do not presuppose time. Division takes place simultaneously. This holds true for both PP and PM. In the second part a mathematical representation will be set up that catches this common structure, hence the essence of all Zeno's arguments, however without refuting them. Its central tenet is an aequivalence proof for Zeno's procedure and Cantor's Continuum Hypothesis. Some number theoretic and geometric implications will be shortly discussed. Furthermore, it will be shown how the Received View on the motion-arguments can easely be derived by the introduction of time as a (non-Zenonian) premiss, thus causing their collapse into arguments which can be approached and refuted by Aristotle's limit-like concept of the potentially infinite, which remained - though in different disguises - at the core of the refutational strategies that have been in use up to the present. Finally, an interesting link to Newtonian mechanics via Cremona geometry can be established.Comment: 41 pages, 7 figure
    corecore