35,207 research outputs found

    Partially Observed Discrete-Time Risk-Sensitive Mean Field Games

    Full text link
    In this paper, we consider discrete-time partially observed mean-field games with the risk-sensitive optimality criterion. We introduce risk-sensitivity behaviour for each agent via an exponential utility function. In the game model, each agent is weakly coupled with the rest of the population through its individual cost and state dynamics via the empirical distribution of states. We establish the mean-field equilibrium in the infinite-population limit using the technique of converting the underlying original partially observed stochastic control problem to a fully observed one on the belief space and the dynamic programming principle. Then, we show that the mean-field equilibrium policy, when adopted by each agent, forms an approximate Nash equilibrium for games with sufficiently many agents. We first consider finite-horizon cost function, and then, discuss extension of the result to infinite-horizon cost in the next-to-last section of the paper.Comment: 29 pages. arXiv admin note: substantial text overlap with arXiv:1705.02036, arXiv:1808.0392

    Controlled diffusion processes

    Full text link
    This article gives an overview of the developments in controlled diffusion processes, emphasizing key results regarding existence of optimal controls and their characterization via dynamic programming for a variety of cost criteria and structural assumptions. Stochastic maximum principle and control under partial observations (equivalently, control of nonlinear filters) are also discussed. Several other related topics are briefly sketched.Comment: Published at http://dx.doi.org/10.1214/154957805100000131 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Quantum risk-sensitive estimation and robustness

    Get PDF
    This paper studies a quantum risk-sensitive estimation problem and investigates robustness properties of the filter. This is a direct extension to the quantum case of analogous classical results. All investigations are based on a discrete approximation model of the quantum system under consideration. This allows us to study the problem in a simple mathematical setting. We close the paper with some examples that demonstrate the robustness of the risk-sensitive estimator.Comment: 24 page
    • …
    corecore