1,536,617 research outputs found

    Unfolding-based Partial Order Reduction

    Get PDF
    Partial order reduction (POR) and net unfoldings are two alternative methods to tackle state-space explosion caused by concurrency. In this paper, we propose the combination of both approaches in an effort to combine their strengths. We first define, for an abstract execution model, unfolding semantics parameterized over an arbitrary independence relation. Based on it, our main contribution is a novel stateless POR algorithm that explores at most one execution per Mazurkiewicz trace, and in general, can explore exponentially fewer, thus achieving a form of super-optimality. Furthermore, our unfolding-based POR copes with non-terminating executions and incorporates state-caching. Over benchmarks with busy-waits, among others, our experiments show a dramatic reduction in the number of executions when compared to a state-of-the-art DPOR.Comment: Long version of a paper with the same title appeared on the proceedings of CONCUR 201

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    A Framework to Synergize Partial Order Reduction with State Interpolation

    Full text link
    We address the problem of reasoning about interleavings in safety verification of concurrent programs. In the literature, there are two prominent techniques for pruning the search space. First, there are well-investigated trace-based methods, collectively known as "Partial Order Reduction (POR)", which operate by weakening the concept of a trace by abstracting the total order of its transitions into a partial order. Second, there is state-based interpolation where a collection of formulas can be generalized by taking into account the property to be verified. Our main contribution is a framework that synergistically combines POR with state interpolation so that the sum is more than its parts

    Partial Order Reduction for Reachability Games

    Get PDF
    Partial order reductions have been successfully applied to model checking of concurrent systems and practical applications of the technique show nontrivial reduction in the size of the explored state space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both players in the game, and we formally prove its correctness on the class of games played on general labelled transition systems. We then instantiate the framework to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies and demonstrate its efficiency

    Partial order reduction for reachability games

    Get PDF

    Partial Order Reduction with Compositional Verification

    Get PDF
    This thesis expands the usage of partial order reduction methods in reducing the state space of large models in model checking. The work done can be divided into two parts. In the first part we introduce two new ample conditions that utilise strongly connected components in place of two existing ample conditions that use cycles. We use these new conditions to optimise existing partial order reduction verifiers and extend them to verify nonblocking properties. We also introduce two selection strategies for choosing ample event sets and an improved ample algorithm in order to improve the efficiency of ample set computation, and investigate how the various combinations of these suggested algorithmic improvements effect several models of varying size. The second part of the thesis introduces the concept of using partial order reduction techniques in combination with compositional verification techniques. We introduce a modified version of the silent continuation rule that makes use of the independence relationship from partial order reduction methods and include algorithms by which they may be implemented in a model verifier. All of the original concepts developed in this thesis are also proven correct

    Formulae of Partial Reduction for Linear Systems of First Order Operator Equations

    Get PDF
    This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form
    corecore