4 research outputs found

    Bidirectional partial power converter interface for energy storage systems to provide peak shaving in grid-tied PV plants

    Get PDF
    The ever growing participation of modern renewable resources in electric markets has shaken the paradigm of generation-demand constant match. Most modern renewables add intermittent behaviour and high variability to electric markets, forcing other renewables and themselves to perform power curtailment and/or having extra generating units connected to the network to compensate power, voltage and frequency variations. In order to handle this scenario, Energy Storage Systems (ESSs) have risen as enabling technologies capable to provide backup energy to compensate power, voltage and frequency fluctuations and, at the same time, offer additional benefits as ancillary services, peak shaving, load shifting, base load generation, etc. This paper presents a novel bidirectional Partial Power Converter (PPC), as an interface between a Battery ESS (BESS) and a grid-tied Photovoltaic (PV) plant. To obtain a better understanding of the converter, its mathematical model is presented and its operation modes are explained. The main purpose of this configuration is to provide peak shaving capability to a grid-tied PV plant, while providing a high efficiency BESS. Simulation results show the operation of the full system (grid-tied PV plant and BESS), performing peak shaving under a step-down and up in solar irradiation

    Review of architectures based on partial power processing for DC-DC applications

    Get PDF
    This paper presents a review of advanced architectures based on the partial power processing concept, whose main objective is to achieve a reduction of the power processed by the converter. If the power processed by the converter is decreased, the power losses generated by the power converter are reduced, obtaining lower sized converters and higher system efficiencies. Through the review 3 different partial power processing strategies are distinguished: Differential Power Converters, Partial Power Converters and Mixed strategies. Each strategy is subdivided into smaller groups that entail different architectures with their own advantages and disadvantages. Also, due to the lack of agreement that exists in the sources around the naming of the different architectures, this paper seeks to stablish a nomenclature that avoids confusion when indexing this type of architectures. Regarding Partial Power Converters an extensive application oriented description is also developed. Finally, the main conclusions obtained through the review are presented

    Review of Architectures Based on Partial Power Processing for DC-DC Applications

    Get PDF
    This paper presents a review of advanced architectures based on the partial power processing concept, whose main objective is to achieve a reduction of the power processed by the converter. If the power processed by the converter is decreased, the power losses generated by the power converter are reduced, obtaining lower sized converters and higher system efficiencies. Through the review 3 different partial power processing strategies are distinguished: Differential Power Converters, Partial Power Converters and Mixed strategies. Each strategy is subdivided into smaller groups that entail different architectures with their own advantages and disadvantages. Also, due to the lack of agreement that exists in the sources around the naming of the different architectures, this paper seeks to stablish a nomenclature that avoids confusion when indexing this type of architectures. Regarding Partial Power Converters an extensive application oriented description is also developed. Finally, the main conclusions obtained through the review are presented

    Implementation of new high efficient input parallel output series partial power DC-DC converter for solar photovoltaic partial shading conditions

    Get PDF
    The proposed research suggests an improvised performance which is efficient and a reliable converter as a reasonable solar photo Voltaic (PV) approach. The proposed research helps in elevating the performance levels so that power extraction is maximized from the respective PV arrays specifically during the case of limited shading. In order to track the maximum amount of power from every solar PV string, connection of DC-DC converters is done amid the solar PV strings. By doing so, maximum power output can be ensured by the operation of each string irrespective of the occurrence of variation in the solar radiation amongst diverse strings. Usually, the DC-DC converter that would be employed for this purpose would process the string鈥檚 power completely. This Full Power Processing (FPP) architecture gives rise to extreme losses of conversion. Hence, the suggested work propound a Partial Power Processing (PPP) that processed a part of the total system power, while the rest of the power is straight away delivered to the output side, thus provides high conversion efficiency when compared to the existing DC-DC FPP converters. An input parallel output series structure having a novel Non-Isolated Partial Power Processing topology (NIPPP) is recommended and the operation鈥檚 details are elucidated depending on the operating principle. For the purpose of evaluating the performance of the converter, Matlab Simulink environmental platform are carried out. The closed loop prototype experimental approach is also carried out with the improvement of efficiency compared to conventional it appears in efficient manner
    corecore