279 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Information Centric Networking in the IoT: Experiments with NDN in the Wild

    Get PDF
    This paper explores the feasibility, advantages, and challenges of an ICN-based approach in the Internet of Things. We report on the first NDN experiments in a life-size IoT deployment, spread over tens of rooms on several floors of a building. Based on the insights gained with these experiments, the paper analyses the shortcomings of CCN applied to IoT. Several interoperable CCN enhancements are then proposed and evaluated. We significantly decreased control traffic (i.e., interest messages) and leverage data path and caching to match IoT requirements in terms of energy and bandwidth constraints. Our optimizations increase content availability in case of IoT nodes with intermittent activity. This paper also provides the first experimental comparison of CCN with the common IoT standards 6LoWPAN/RPL/UDP.Comment: 10 pages, 10 figures and tables, ACM ICN-2014 conferenc

    TagNet: a scalable tag-based information-centric network

    Get PDF
    The Internet has changed dramatically since the time it was created. What was originally a system to connect relatively few remote users to mainframe computers, has now become a global network of billions of diverse devices, serving a large user population, more and more characterized by wireless communication, user mobility, and large-scale, content-rich, multi-user applications that are stretching the basic end-to-end, point-to-point design of TCP/IP. In recent years, researchers have introduced the concept of Information Centric Networking (ICN). The ambition of ICN is to redesign the Internet with a new service model more suitable to today's applications and users. The main idea of ICN is to address information rather than hosts. This means that a user could access information directly, at the network level, without having to first find out which host to contact to obtain that information. The ICN architectures proposed so far are based on a "pull" communication service. This is because today's Internet carries primarily video traffic that is easy to serve through pull communication primitives. Another common design choice in ICN is to name content, typically with hierarchical names similar to file names or URLs. This choice is once again rooted in the use of URLs to access Web content. However, names offer only a limited expressiveness and may or may not aggregate well at a global scale. In this thesis we present a new ICN architecture called TagNet. TagNet intends to offer a richer communication model and a new addressing scheme that is at the same time more expressive than hierarchical names from the viewpoint of applications, and more effective from the viewpoint of the network for the purpose of routing and forwarding. For the service model, TagNet extends the mainstream "pull" ICN with an efficient "push" network-level primitive. Such push service is important for many applications such as social media, news feeds, and Internet of Things. Push communication could be implemented on top of a pull primitive, but all such implementations would suffer for high traffic overhead and/or poor performance. As for the addressing scheme, TagNet defines and uses different types of addresses for different purposes. Thus TagNet allows applications to describe information by means of sets of tags. Such tag-based descriptors are true content-based addresses, in the sense that they characterize the multi-dimensional nature of information without forcing a partitioning of the information space as is done with hierarchical names. Furthermore, descriptors are completely user-defined, and therefore give more flexibility and expressive power to users and applications, and they also aggregate by subset. By their nature, descriptors have no relation to the network topology and are not intended to identify content univocally. Therefore, TagNet complements descriptors with locators and identifiers. Locators are network-defined addresses that can be used to forward packets between known nodes (as in the current IP network); content identifiers are unique identifiers for particular blocks of content, and therefore can be used for authentication and caching. In this thesis we propose a complete protocol stack for TagNet covering the routing scheme, forwarding algorithm, and congestion control at the transport level. We then evaluate the whole protocol stack showing that (1) the use of both push and pull services at the network level reduces network traffic significantly; (2) the tree-based routing scheme we propose scales well, with routing tables that can store billions of descriptors in a few gigabytes thanks to descriptor aggregation; (3) the forwarding engine with specialized matching algorithms for descriptors and locators achieves wire-speed forwarding rates; and (4) the congestion control is able to effectively and fairly allocate all the bandwidth available in the network while minimizing the download time of an object and avoiding congestion

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Mobility support in Named Data Networking: a survey

    Get PDF
    corecore